Subscribe free to our newsletters via your
. Space Industry and Business News .




EXO WORLDS
Distant planet's interior chemistry may differ from our own
by Staff Writers
Washington DC (SPX) Sep 03, 2015


This is the crystal structure of magnesium peroxide, MgO2, courtesy of Sergey Lobanov, created using K. Momma's program for drawing crystal structures. Image courtesy Sergey Lobanov. For a larger version of this image please go here.

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. New work from a team including three Carnegie scientists demonstrates that different magnesium compounds could be abundant inside other planets as compared to Earth. Their work is published by Scientific Reports.

Oxygen and magnesium are the two most-abundant elements in Earth's mantle. However, when scientists are predicting the chemical compositions of rocky, terrestrial planets outside of our own Solar System, they shouldn't assume that other rocky planets would have Earth-like mantle mineralogy, according to a research team including Carnegie's Sergey Lobanov, Nicholas Holtgrewe, and Alexander Goncharov.

Stars that have rocky planets are known to vary in chemical composition. This means that the mineralogies of these rocky planets are probably different from each other and from our own Earth, as well. For example, elevated oxygen contents have been observed in stars that host rocky planets.

As such, oxygen may be more abundant in the interiors of other rocky planets, because the chemical makeup of a star would affect the chemical makeups of the planets that formed around it. If a planet is more oxidized than Earth, then this could affect the composition of the compounds found in its interior, too, including the magnesium compounds that are the subject of this study.

Magnesium oxide, MgO, is known to be remarkably stable, even under very high pressures. And it isn't reactive under the conditions found in Earth's lower mantle. Whereas magnesium peroxide, MgO2, can be formed in the laboratory under high-oxygen concentrations, but it is highly unstable when heated, as would be the case in a planetary interior.

Previous theoretical calculations had indicated that magnesium peroxide would become stable under high-pressure conditions. Taking that idea one step further, the team set out to test whether stable magnesium peroxide could be synthesized under extreme conditions mimicking planetary interiors.

Using a laser-heated, diamond-anvil cell, they brought very small samples of magnesium oxide and oxygen to different pressures meant to mimic planetary interiors, from ambient pressure to 1.6 million times normal atmospheric pressure (0-160 gigapascals), and heated them to temperatures above 3,140 degrees Fahrenheit (2,000 Kelvin). They found that under about 950,000 times normal atmospheric pressure (96 gigapascals) and at temperatures of 3,410 degrees Fahrenheit (2,150 Kelvin), magnesium oxide reacted with oxygen to form magnesium peroxide.

"Our findings suggest that magnesium peroxide may be abundant in extremely oxidized mantles and cores of rocky planets outside our Solar System," said Lobanov, the paper's lead author "When we develop theories about distant planets, it's important that we don't assume their chemistry and mineralogy is Earth-like."

"These findings provide yet another example of the ways that high-pressure laboratory experiments can teach us about not only our own planet, but potentially about distant ones as well," added Goncharov.

Because of its chemical inertness, MgO has also long been used as a conductor that transmits heat and pressure to an experimental sample. "But this new information about its chemical reactivity under high pressure means that such experimental uses of MgO need to be revised, because it they could be creating unwanted reactions and affecting results," Goncharov added.

The other co-authors are Qiang Zhu and Artem Oganov of Stony Brook University and Clemens Prescher and Vitali Prakapenka of University of Chicago.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Carnegie Institution
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
Earth's mineralogy unique in the cosmos
Washington DC (SPX) Aug 31, 2015
New research from a team led by Carnegie's Robert Hazen predicts that Earth has more than 1,500 undiscovered minerals and that the exact mineral diversity of our planet is unique and could not be duplicated anywhere in the cosmos. Minerals form from novel combinations of elements. These combinations can be facilitated by both geological activity, including volcanoes, plate tectonics, and w ... read more


EXO WORLDS
Self-sweeping laser could dramatically shrink 3-D mapping systems

Using ultrathin sheets to discover new class of wrapped shapes

Customizing 3-D printing

DNA-guided 3-D printing of human tissue is unveiled

EXO WORLDS
45th SW supports 4th Mobile User Objective System satellite launch

Navy extends satellite support contract

BAE Systems modernizing Australia's military communications

GSAT-6 military satellite put in its orbital slot

EXO WORLDS
US Launches Atlas V Rocket With Navy Communications Satellite After Delay

US Navy to Launch Folding-Fin Ground Attack Rocket on Scientific Mission

FCube facility enters operations with fueling of Soyuz Fregat upper stage

SpaceX delays next launch after blast

EXO WORLDS
Soyuz ready for liftoff with two Galileo satellites

Soyuz set to launch 2 Galileo navigation satellites

China Deploys New Security System to Ensure Safety at Military Parade

Mission team ready for Galileo launch

EXO WORLDS
Selex ES supplying electronic warfare system for Brazilian helicopters

Chromalloy overhauling component of USAF's F108 engines

Confirmed MH370 wing part won't change search: Australia

China's Bohai to buy jet lessor Avolon in $7.6 bn deal

EXO WORLDS
Intel putting $50 mn into quantum computing research

Modified bacteria become a multicellular circuit

Superlattice design realizes elusive multiferroic properties

A little light interaction leaves quantum physicists beaming

EXO WORLDS
First global antineutrino emission map highlights Earth's energy budget

SMAP ends radar operations

Russia to Develop Earth Remote-Sensing Satellite System for Iran

Sentinel-1A watching Jakobshavn glacier in action

EXO WORLDS
Pollution dispersion in cities improved by trees

Poison in the Arctic and the human cost of 'clean' energy

India bars Greenpeace from receiving foreign funding

Seabird SOS




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.