Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
Distance to nearest galaxy measured
by Staff Writers
Pasadena CA (SPX) Mar 11, 2013


The international collaboration worked out the distance to the Large Magellanic Cloud by observing rare close pairs of stars, known as eclipsing binaries. These pairs are gravitationally bound to each other, and once per orbit, as seen from Earth, the total brightness from the system drops as each component eclipses its companion.

A team of astronomers including Carnegie's Ian Thompson have managed to improve the measurement of the distance to our nearest neighbor galaxy and, in the process, refine an astronomical calculation that helps measure the expansion of the universe. Their work is published March 7 by Nature.

The Hubble constant is a fundamental quantity that measures the current rate at which our universe is expanding. It is named after 20th Century Carnegie astronomer Edwin P. Hubble, who astonished the world by discovering that our universe has been growing continuously since its inception.

Determining the Hubble constant (a direct measurement of the rate of this continuing expansion) is critical for gauging the age and size of our universe. One of the largest uncertainties plaguing past measurements of the Hubble constant has involved the distance to the Large Magellanic Cloud (LMC), our nearest neighboring galaxy, which orbits our own Milky Way.

Astronomers survey the scale of the Universe by first measuring the distances to close-by objects (for example Cepheid variable stars studied by Wendy Freedman, director of the Carnegie Observatories, and her collaborators) and then using observations of these objects in more distant galaxies to pin down distances further and further out in the Universe.

But this chain is only as accurate as its weakest link. Up to now finding a precise distance to the LMC has proved elusive. Because stars in this galaxy are used to fix the distance scale for more remote galaxies, an accurate distance is crucially important.

"Because the LMC is close and contains a significant number of different stellar distance indicators, hundreds of distance measurements using it have been recorded over the years," Thompson said. "Unfortunately, nearly all the determinations have systemic errors, with each method carrying its own uncertainties."

The international collaboration worked out the distance to the Large Magellanic Cloud by observing rare close pairs of stars, known as eclipsing binaries. These pairs are gravitationally bound to each other, and once per orbit, as seen from Earth, the total brightness from the system drops as each component eclipses its companion.

By tracking these changes in brightness very carefully, and also measuring the orbital speeds of the stars, it is possible to work out how big the stars are, how massive they are, and other information about their orbits. When this is combined with careful measurements of the apparent brightness, remarkably accurate distances can be determined.

This method has been used before in taking measurements to the LMC, but with hot stars. As such, certain assumptions had to be made and the distances were not as accurate as desired. This new work, led by Grzegorz Pietrzynski of the Universidad de Concepcion in Chile and Warsaw University Observatory in Poland, used 16-years-worth of observations to identify a sample of intermediate mass binary stars with extremely long orbital periods, perfect for measuring precise and accurate distances.

The team observed eight of these binary systems over eight years, gathering data at Las Campanas Observatory and the European Southern Observatory. The LMC distance calculated using these eight binary stars is purely empirical, without relying on modeling or theoretical predictions.

The team refined the uncertainty in the distance to the LMC down to 2.2 percent. This new measurement can be used to decrease the uncertainty in calculations of the Hubble constant to 3 percent, with prospects of improving this to a 2 percent uncertainty in a few years as the sample of binary stars is increased.

.


Related Links
Carnegie Institution
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Modeling Jupiter and Saturn's possible origins
Washington DC (SPX) Mar 07, 2013
New theoretical modeling by Carnegie's Alan Boss provides clues to how the gas giant planets in our solar system-Jupiter and Saturn-might have formed and evolved. His work was published recently by the Astrophysical Journal. New stars are surrounded by rotating gas disks during the early stages of their lives. Gas giant planets are thought to form in the presence of these disks. Obse ... read more


STELLAR CHEMISTRY
Russian satellite hit by remnants of destroyed Chinese spacecraft

NUS graphene researchers create 'superheated' water that can corrode diamonds

Activists fault WHO report on Fukushima radiation

SimCity climbing from launch wreckage

STELLAR CHEMISTRY
INTEROP-7000 uses ISSI to link IP-based voice comms with legacy radio

Space race under way to create quantum satellite

Boeing Receives USAF Contract for Integrated C4ISR Targeting Solution

Air Operations Center Modernization Program PDR Completed

STELLAR CHEMISTRY
Vega launcher integration continues for its April mission

SpaceX's capsule arrives at ISS

Dragon Transporting Two ISS Experiments For AMES

SpaceX Optimistic Despite Dragon Capsule Mishap

STELLAR CHEMISTRY
China city searching for 'modern Marco Polo'

Milestone for European navigation system

China targeting navigation system's global coverage by 2020

Russian GLONASS space satellite group again at full strength

STELLAR CHEMISTRY
SNC, Embraer weigh in on Air Force award

Cathay Pacific says 2012 net profit slumps 83.3%

Beechcraft fights defense Embraer contract

Upgraded early warning aircraft arrive in Taiwan

STELLAR CHEMISTRY
Creating indestructible self-healing circuits

Improving Electronics by Solving Nearly Century-old Problem

UCSB physicists make discovery in the quantum realm

First discovery of a natural topological insulator

STELLAR CHEMISTRY
Significant reduction in temperature and vegetation seasonality over northern latitudes

GOCE: the first seismometer in orbit

Japan's huge quake heard from space: study

Space station to watch for Earth disasters

STELLAR CHEMISTRY
Dead pigs contaminating Chinese river?

Toxic gas leak in South Korea, 11 hospitalised

Japan warns about smog drifting from China

Electronic waste recycling on the increase




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement