Space Industry and Business News  
OIL AND GAS
'Dirty Blizzard' sent 2010 Gulf oil spill pollution to seafloor
by Staff Writers
New York NY (SPX) May 31, 2016


Dark clouds of smoke and fire emerge as oil burns during a controlled fire in the Gulf of Mexico, 6 May 2010. A new study found black carbon left from the burns joined a 'dirty blizzard' of contaminants that eventually settled on the seafloor. Image courtesy US Navy. For a larger version of this image please go here.

Scientists working in the Gulf of Mexico have found that contaminants from the massive 2010 Deepwater Horizon oil spill lingered in the subsurface water for months after oil on the surface had been swept up or dispersed. In a new study, they also detailed how remnants of the oil, black carbon from burning oil slicks and contaminants from drilling mud combined with microscopic algae and other marine debris to descend in a "dirty blizzard" to the seafloor.

The work, published May 30 in the Proceedings of the National Academy of Sciences, confirms that contaminants found in the water column and on the seafloor were indeed from the Deepwater Horizon spill, and not from the many natural oil seeps in the Gulf. The initial dispersal of materials in the water made pollutants hard to detect, but the eventual accumulation of "marine snow" concentrated the toxins on the seabed, where they can enter the food web, possibly affecting fish and corals in deep waters.

The findings suggest that the ecological effects of oil spills could last longer than previously thought. The paper comes on the heels of the most recent spill, detected May 12. About 88,200 gallons of oil were released from an underwater pipeline operated by Shell about 90 miles off the coast of Louisiana, according to news reports. Much of the oil has been recovered, and there are as yet no reported impacts on wildlife. But scientists are just beginning to assess the effects.

"We knew oil pollutants can be carried downward by marine snow, but we didn't expect the pollutants to stay in the water for such a long time," said Beizhan Yan of the Lamont-Doherty Earth Observatory, an environmental chemist who is lead author of the study.

Some researchers have contended that contaminants found on the seafloor could be coming from natural oil seeps. But Yan and colleagues used various "fingerprinting" techniques to demonstrate that the hydrocarbons in the water were derived from crude oil of the kind leaking from the Deepwater Horizon site. The presence of barium and the distribution of olefin compounds, two key components in drilling mud, confirmed the contaminants were associated with the spill.

"It's kind of like a smoking gun for the source of the contaminants," Yan said.

The study also sheds light on why these contaminants can stay so long--five months--in the water column. "The deposition of hydrocarbons was largely controlled by the particle sources, which are available sporadically," Yan said. "Hydrocarbons, especially high molecular weight ones, were adsorbed tightly to fine particles. These fine particles can linger in the water column for weeks." But a bloom of diatoms, microscopic marine plants, acted as a "dust bunny" to accumulate the particles and carry them below after the diatoms died, he said.

"Normally we don't think of oil as sinking," said co-author Uta Passow, a biological oceanographer at the Marine Science Institute at the University of California Santa Barbara. "People in the past have not really ever considered oil coming to the seafloor, especially very, very deep. We now know how the oil gets down there in large amounts and affects the communities that live there."

Though it's tough to measure exactly how much of the spilled oil winds up on the seafloor, Passow said it could be substantial. "I would argue it's probably more than 10 percent, probably even more than 15 percent," she said. That could add up to millions of gallons.

Other studies have documented how the oil and other contaminants dispersed, and have established that petroleum hydrocarbons from the spill have accumulated on the seafloor. Scientists also have known that phytoplankton, microscopic marine plants, play a role in delivering the oil to the seafloor. In the new study, the researchers describe how that happens.

The paper "provides a likely mechanism for the impact to deep sea corals discovered outside of the depth range and most likely flow path of the Deepwater plume of oil and gas that formed during the spill," said Chuck Fisher, a marine biologist at Penn State who was not involved in the study. Fisher's work documented damage to corals following the spill.

Between April 20 and July 15, 2010, about 200 million gallons of crude oil gushed into the Gulf of Mexico from a blown well beneath the Deepwater Horizon oil rig--the largest marine oil spill in U.S. history. Some of the oil was recovered, evaporated or was deliberately burned at the surface. Some washed ashore; still more was broken down by chemical dispersants and consumed by bacteria. But a large portion, perhaps a quarter, has been unaccounted for. Although the oil was undetectable in surface waters within a few weeks, the deeper environmental consequences were unclear because the mechanisms that transport petroleum hydrocarbons to the ocean floor were not well understood.

Yan and his colleagues used sediment traps to collect diatoms and other matter slowly sinking through the water and found contaminants clinging to the tiny particles, including black carbon left over from burning oil slicks, and barium and olefin, which are used in drilling mud. The researchers were "shocked" to find the barium Yan said, because it was assumed that the contaminant would settle quickly near application sites.

The team deployed a sediment trap roughly 4.5 miles from the capped well and captured sinking material from August 2010 to October 2011. According to the researchers, the black carbon continued to sink for two months after the oil fires were extinguished, while other contaminants, including barium, accumulated for at least five months.

"The traps collected this material months after everyone thought the leak was over," Passow said. "The material stays in the water much longer than people think." And because drilling mud and oil are present whenever drilling is going on, contaminants could be winding up on the bottom in other situations, as well, she said.

"Considering the widespread use of drilling mud at hundreds of ocean drilling sites around the world, the environmental implications of such an unexpectedly long residence time of barium in the water column is significant and worthy of further investigation," the paper's authors write.

The researchers found that the movement of contaminants from the water column to the seafloor was intensified during August and September 2010 by an exceptionally large bloom of diatoms. These phytoplankton produce a mucous, particularly when dying, that acts as a glue for other particles in the water. As this "marine snow" sank, it carried the contaminants from the oil spill to the seafloor.

It's unclear whether the oil itself played a role in precipitating the diatom bloom. A study earlier this year by another Lamont researcher, Ajit Subramaniam, found phytoplankton thriving above natural oil seeps in the Gulf. While the oil itself doesn't seem to help the phytoplankton, turbulence from the seeps brings nutrients up from the deep that do.

Subramaniam said that water management authorities increased discharge of the Mississippi River to push the Deepwater Horizon oil plume away from the shore, and that may have pushed nutrients out into the Gulf that could have fueled the diatom bloom.

"There were people out there measuring hydrocarbons," Subramaniam said. But they didn't find any in the water after the wellhead was capped, and "by August-September, the word on the street is the show's over, we can all go home." But the new study "shows they just weren't looking for the right things."

The study may prove helpful in planning future responses to spills, how to measure their impact, and how to contain damage to the environment and associated food systems and ensure food safety. Yan said the team is currently studying what happens to the oil seeping naturally in the Gulf through the Ecosystem Impacts of Oil and Gas Inputs to the Gulf project.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Earth Institute at Columbia University
All About Oil and Gas News at OilGasDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
OIL AND GAS
Barium leaches directly from fracked rocks, Dartmouth team finds
Hanover NH (SPX) May 26, 2016
Dartmouth College researchers are shedding light on the early chemical reactions in the organic sediments that would ultimately become the Marcellus Shale, a major source of natural gas and petroleum. The findings appear in the journal Geochimica et Cosmochimica Acta. The research extends an earlier study by the Dartmouth team. Both PDFs are available on request. Water injected into shale ... read more


OIL AND GAS
Thermal modification of wood and a complex study of its properties by magnetic resonance

Finding a new formula for concrete

Single-step hydrogen peroxide production could be cleaner, more efficient

Clue for efficient usage of low-cost nickel catalysts

OIL AND GAS
Elbit contracted for tactical communications systems

SpeedCast to build ground station for X-band Satcom Services in Asia-Pacific

Airbus Defence and Space opens a ground station in Australia for its Skynet military satellite

Navy orders additional Digital Modular Radios

OIL AND GAS
Arianespace to supply payload dispenser systems for OneWeb constellation

UK's First Spaceport Could Be Beside the Sea

SpaceX Return of Samples Marks Next Step in One-Year Mission Science

Arianespace's Soyuz is approved for its early morning liftoff on May 24

OIL AND GAS
And yet it moves: 14 Galileo satellites now in orbit

Arianespace continues the momentum for Europe's Galileo program on its latest Soyuz flight

China to launch 30 Beidou navigation satellites in next 5 years

Lockheed demos future evolution of its flexible GPS 3 satellite design

OIL AND GAS
More debris found with possible MH370 link: Australia

Sweden modernizing Gripen fleet

Airbus supplying helos for British military training

Dutch F-35 jets touch down for European air show debut

OIL AND GAS
A switch for light-wave electronics

Dartmouth team creates new method to control quantum systems

New tabletop instrument tests electron mobility for next-gen electronics

Ferrous chemistry in aqueous solution unravelled

OIL AND GAS
Sun glitter reveals coastal waves

Van Allen Probes Reveal Long-Term Behavior of Earth's Ring Current

New data on the variability of the Earth's reflectance over the last 16 years

Astrosat welcomes the Copernicus Masters Challenge

OIL AND GAS
Ocean pollution science focusing on the fragmentation of plastic waste

India launches probe as insect excrement turns Taj green

Peru declares mercury poison emergency due to gold mining

Residents near Madrid return home as toxic tyre blaze under control









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.