Space Industry and Business News  
EARTH OBSERVATION
Digital corrections for Sentinel-1 satellite images
by Staff Writers
Berlin, Germany (SPX) Jul 07, 2021

Digital corrections for a radar image acquired over Alaska

Researchers at the German Aerospace Center Earth Observation Center (EOC) have developed a correction procedure for the radar satellites of the European Sentinel-1 mission. With this methodology, the geographic location of satellite measurements can be determined with significantly greater accuracy. Every pixel can be localised on Earth's surface with a precision of a few centimetres instead of a few metres.

Satellite-borne Synthetic Aperture Radar (SAR) uses radar signals transmitted towards Earth's surface to acquire image data unconstrained by time of day and weather conditions. The SAR principle evaluates the propagation times of these signals and, in addition to the image data, provides highly accurate measurements of the distance from the satellite to Earth's surface. The position measurement is available for any object that is visible as a pixel in the radar image.

If all the influences that interfere with the measurement are factored out, positional accuracy of down to one hundredth of the image resolution can be achieved. In this way, the location of an image pixel with a ground resolution of one metre can be determined down to within one centimetre.

Knowledge transfer in radar-based Earth observation
The complex correction procedures were first developed at EOC as part of the German TerraSAR-X radar mission. Now, the Sentinel-1 user community is also able to benefit from this DLR expertise. The European Space Agency (ESA) has commissioned EOC to improve the geometric measurement accuracy of the Sentinel-1 image data from the present several metres down to at least 20 centimetres.

After more than two years of development and testing, the correction processor was delivered to ESA in May 2021 and in June was introduced at the ESA FRINGE 2021 conference in June. At present, the processor and the resulting products are in test operation at ESA. Initial trial applications in the areas of ice mapping and interferometry are already yielding promising results. Further user studies are planned by ESA until the end of 2021.

With the European Sentinel-1 Copernicus Mission, the Sentinel-1 Extended Timing Annotation Dataset (S-1 ETAD) correction methodology can be used operationally for the first time. It will be used for global mapping of Earth and to improve many applications, for example the measurement of large-scale ice movements or ground displacements.

Since the launch of the first Sentinel-1 satellite in 2014 and the second satellite in 2016, the Sentinel-1 mission has revolutionised radar-based Earth observation. Every day, the two satellites, Sentinel-1A and Sentinel-1B, deliver more than 100 radar images of Earth's surface that are available free of charge to all users.

Results within minutes
Because of the very large amount of data, the processor developed by EOC has to run very rapidly. The complex corrections for a typical Sentinel-1 image are computed in just a few minutes. For each individual image, the software takes into account the signal propagation delays through the neutral troposphere and the dispersive ionosphere, the deformations of the solid Earth cause by tidal forces, and SAR-specific image errors that arise during operational processing of the Sentinel-1 images.

This demanding analysis is made using the exact parameters of each SAR image, the satellite orbit determined to an accuracy five centimetres, and a global terrain model with a resolution of 90 metres. Added to this, there are the parameters from the numerical weather model created by the European Centre for Medium-Range Weather Forecasts (ECMWF) and the electron content of the ionosphere as measured by Galileo and other global satellite navigation systems.

These data sets are continuously downloaded by ESA's Sentinel-1 ground segment and provided for the period of the recordings. The calculated effects add up to as much as five metres in the range direction (image coordinates perpendicular to the satellite's flight direction) and up to six metres in the azimuth direction (image coordinates along the satellite's flight direction). The results are made available as customised corrections for each Sentinel-1 radar image.

Final, operational generation by the Sentinel-1 ground segment and delivery of ETAD products is planned for 2022.


Related Links
Sentinel-1 Mission at ESA
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Scientists use NASA satellite data to track ocean microplastics from space
Greenbelt MD (SPX) Jun 28, 2021
Scientists from the University of Michigan have developed an innovative way to use NASA satellite data to track the movement of tiny pieces of plastic in the ocean. Microplastics form when plastic trash in the ocean breaks down from the sun's rays and the motion of ocean waves. These small flecks of plastic are harmful to marine organisms and ecosystems. Microplastics can be carried hundreds or thousands of miles away from the source by ocean currents, making it difficult to track and remove ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Scientists created several samples of glasses for protection against nuclear radiation

New UK Space Fund aims to make space safer

Northrop Grumman's SABR Radar Goes Agile

Energy production at Mutriku remains constant even if the wave force increases

EARTH OBSERVATION
Last Tianlian I satellite placed in orbit

China's relay satellites facilitate clear, smooth space-ground communication

Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

EARTH OBSERVATION
EARTH OBSERVATION
GMV develops a new maritime Galileo receiver

NASA extends Cyclone Global Navigation Satellite System mission

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

Lockheed Martin-Built Next Generation GPS III Satellite Propels Itself to Orbit

EARTH OBSERVATION
Time between F-35 software updates increased to cut down on flaws

Black Hawk helicopter makes emergency landing in Bucharest

Jeff Bezos donates record breaking $200 mn to Smithsonian

B-52 bomber task force deploys to Guam ahead of Talisman Saber exercise

EARTH OBSERVATION
Concepts for the development of German quantum computers

Ultrathin semiconductors electrically connected to superconductors for the first time

UK PM reveals govt will review Chinese purchase of semiconductor firm

Broadcom settles US antitrust case on chip market

EARTH OBSERVATION
Blackjack program deploys two Mandrake 2 satellites

Digital corrections for Sentinel-1 satellite images

30 years of China's meteorological satellite data

NASA Space Lasers Map Meltwater Lakes in Antarctica With Striking Precision

EARTH OBSERVATION
A greener Games? Tokyo 2020's environmental impact

Erosion, pollution, business: five aspects of Venice cruise ship ban

Britain, Australia brace for UNESCO world heritage rulings

New gas sensing device to aid air quality assessments, health screenings









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.