Space Industry and Business News  
CARBON WORLDS
Digging Deep Into Diamonds

A diamond-based nanowire device. Researchers used a top-down nanofabrication technique to embed color centers into a variety of machined structures. By creating large device arrays rather than just "one-of-a-kind" designs, the realization of quantum networks and systems, which require the integration and manipulation of many devices in parallel, is more likely. Credit: Illustrated by Jay Penni.
by Staff Writers
Cambridge MA (SPX) Feb 16, 2010
By creating diamond-based nanowire devices, a team at Harvard has taken another step towards making applications based on quantum science and technology possible.

The new device offers a bright, stable source of single photons at room temperature, an essential element in making fast and secure computing with light practical.

The finding could lead to a new class of nanostructured diamond devices suitable for quantum communication and computing, as well as advance areas ranging from biological and chemical sensing to scientific imaging.

Published in the February 14th issue of Nature Nanotechnology, researchers led by Marko Loncar, Assistant Professor of Electrical Engineering at the Harvard School of Engineering and Applied Sciences (SEAS), found that the performance of a single photon source based on a light emitting defect (color center) in diamond could be improved by nanostructuring the diamond and embedding the defect within a diamond nanowire.

Scientists, in fact, first began exploiting the properties of natural diamonds after learning how to manipulate the electron spin, or intrinsic angular momentum, associated with the nitrogen vacancy (NV) color center of the gem. The quantum (qubit) state can be initialized and measured using light.

The color center "communicates" by emitting and absorbing photons. The flow of photons emitted from the color center provides a means to carry the resulting information, making the control, capture, and storage of photons essential for any kind of practical communication or computation. Gathering photons efficiently, however, is difficult since color-centers are embedded deep inside the diamond.

"This presents a major problem if you want to interface a color center and integrate it into real-world applications," explains Loncar. "What was missing was an interface that connects the nano-world of a color center with macro-world of optical fibers and lenses."

The diamond nanowire device offers a solution, providing a natural and efficient interface to probe an individual color center, making it brighter and increasing its sensitivity. The resulting enhanced optical properties increases photon collection by nearly a factor of ten relative to natural diamond devices.

"Our nanowire device can channel the photons that are emitted and direct them in a convenient way," says lead-author Tom Babinec, a graduate student at SEAS.

Further, the diamond nanowire is designed to overcome hurdles that have challenged other state-of-the-art systems-such as those based on fluorescent dye molecules, quantum dots, and carbon nanotubes-as the device can be readily replicated and integrated with a variety of nano-machined structures.

The researchers used a top-down nanofabrication technique to embed color centers into a variety of machined structures. By creating large device arrays rather than just "one-of-a-kind" designs, the realization of quantum networks and systems, which require the integration and manipulation of many devices in parallel, is more likely.

"We consider this an important step and enabling technology towards more practical optical systems based on this exciting material platform," says Loncar. "Starting with these synthetic, nanostructured diamond samples, we can start dreaming about the diamond-based devices and systems that could one day lead to applications in quantum science and technology as well as in sensing and imaging."

Loncar and Babinec's co-authors included research scholar Birgit Hausmann, graduate student Yinan Zhang, and postdoctoral student Mughees Khan, all at SEAS; graduate student Jero Maze in the Department of Physics at Harvard; and faculty member Phil R. Hemmer at Texas A and M University.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Harvard University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Nano For The Senses And Much More At Nano Tech 2010
Tokyo, Japan (SPX) Feb 04, 2010
A mystical glow emanates from the display case. A white light appears out of nowhere. And a light source is invisible - at least at first glance. Only upon close examination does the source of the apparently supernatural illumination become visible: a light diode, smaller than a pinhead, passes through thousands of infinitesimal lens structures measuring only a few hundred nanometers, et voil�: ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement