Space Industry and Business News  
PHYSICS NEWS
Detecting new particles around black holes with gravitational waves
by Staff Writers
Amsterdam. Netherlands (SPX) Jun 08, 2022

An atom in the sky. If new ultralight particles exist, black holes would be surrounded by a cloud of such particles that behaves surprisingly similar to the cloud of electrons in an atom. When another heavy object spirals in and eventually merges with the black hole, the gravitational atom gets ionized and emits particles just like electrons are emitted when light is shone onto a metal.

Clouds of ultralight particles can form around rotating black holes. A team of physicists from the University of Amsterdam and Harvard University now show that these clouds would leave a characteristic imprint on the gravitational waves emitted by binary black holes.

Black holes are generally thought to swallow all forms of matter and energy surrounding them. It has long been known, however, that they can also shed some of their mass through a process called superradiance. While this phenomenon is known to occur, it is only effective if new, so far unobserved particles with very low mass exist in nature, as predicted by several theories beyond the Standard Model of particle physics.

Ionizing gravitational atoms
When mass is extracted from a black hole via superradiance, it forms a large cloud around the black hole, creating a so-called gravitational atom. Despite the immensely larger size of a gravitational atom, the comparison with sub-microscopic atoms is accurate because of the similarity of the black hole plus its cloud with the familiar structure of ordinary atoms, where clouds of electrons surround a core of protons and neutrons.

In a publication that appeared in Physical Review Letters this week, a team consisting of UvA physicists Daniel Baumann, Gianfranco Bertone, and Giovanni Maria Tomaselli, and Harvard University physicist John Stout, suggest that the analogy between ordinary and gravitational atoms runs deeper than just the similarity in structure. They claim that the resemblance can in fact be exploited to discover new particles with upcoming gravitational wave interferometers.

In the new work, the researchers studied the gravitational equivalent of the so-called 'photoelectric effect'. In this well-known process, which for example is exploited in solar cells to produce an electric current, ordinary electrons absorb the energy of incident particles of light and are thereby ejected from a material - the atoms 'ionize'.

In the gravitational analogue, when the gravitational atom is part of a binary system of two heavy objects, it gets perturbed by the presence of the massive companion, which could be a second black hole or a neutron star. Just as the electrons in the photoelectric effect absorb the energy of the incident light, the cloud of ultralight particles can absorb the orbital energy of the companion, so that some of the cloud gets ejected from the gravitational atom.

Finding new particles
The team demonstrated that this process may dramatically alter the evolution of such binary systems, significantly reducing the time required for the components to merge with each other. Moreover, the ionization of the gravitational atom is enhanced at very specific distances between the binary black holes, which leads to sharp features in the gravitational waves that we detect from such mergers.

Future gravitational wave interferometers - machines similar to the LIGO and Virgo detectors that over the past few years have shown us the first gravitational waves from black holes - could observe these effects. Finding the predicted features from gravitational atoms would provide distinctive evidence for the existence of new ultralight particles.

Research Report:Detecting new particles around black holes with gravitational waves


Related Links
University of Amsterdam
The Physics of Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


PHYSICS NEWS
New spin on galaxy rotation saves controversial gravity theory
St Andrews UK (SPX) May 24, 2022
An international group of astronomers, led by a physicist at the University of St Andrews, has revived an alternative gravity theory. Headed by Dr Indranil Banik of the School of Physics and Astronomy at St Andrews, the study revealed a high predicted rotation speed of gas in a dwarf galaxy consistent with the previously debunked theory known as Milgromian Dynamics (MOND). An earlier study of the rotation speed of gas in the dwarf galaxy AGC 114905 (Mancera Pina et al, 2022) found that the g ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Isar Aerospace and EXOTRAIL partner on cloud-based simulation software ExoOPSTM

James Webb telescope hit by micrometeoroid: NASA

Smartphone technology provides satellites with increased computing power

Irvine scientists observe effects of heat in materials with atomic resolution

PHYSICS NEWS
Raytheon Intelligence and Space conducts Troposcatter comms test for US Army

SmartSat buys EOS Space Systems to advance its CHORUS tactical satellite terminals

COFFEE program jump-starts integrable filtering for wideband superiority

MINC Program Aims to Enable Critical Data Flow Even in Contested Environments

PHYSICS NEWS
PHYSICS NEWS
The face of Galileo

Astrocast acquires Hiber, accelerates OEM strategy.

Volunteers watching the skies for the weather and stars

EUSPA celebrates its first 365 days of new Galileo operations

PHYSICS NEWS
Iris system to digitalise airspace goes global

Venus Aerospace unveils mach 9 hypersonic spaceplane Stargazer

AFRL leads effort to develop, test Hybrid Halvorsen Aircraft Loader Prototype

MIT unveils new Wright Brothers Wind Tunnel

PHYSICS NEWS
A quantum drum that stores quantum states for record-long times

Engineers build LEGO-like artificial intelligence chip

Thermal insulation for quantum technologies

The way of water: Making advanced electronics with H2O

PHYSICS NEWS
Unravelling the mysteries of clouds

Airbus-built Earth observation satellite SARah-1 ready for launch

Earth's magnetic poles not about to flip

Studying grassland from space

PHYSICS NEWS
Polluted air cuts global life expectancy by two years

'My apartment vibrates': New Yorkers fight noisy helicopter rides

Air pollution may increase freezing rain in the Northern Hemisphere

UN crowd-funds to prevent oil spill disaster off Yemen









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.