Space Industry and Business News  
TECH SPACE
Deriving inspiration from the dragon tree
by Staff Writers
Karlsruher, Germany (SPX) Sep 15, 2016


The outer shell (left) and the vascular system (right) of the branch root connection in dragon tree in the loaded (yellow) and unloaded (red ) state. Image courtesy Hesse and University of Freiburg. For a larger version of this image please go here.

Could dragon trees serve as a source of inspiration for innovations in lightweight construction? A team of researchers at the University of Freiburg and the Karlsruhe Institute of Technology (KIT) has laid the groundwork for designing technical fiber-reinforced lightweight ramifications modeled on branch-stem attachments.

With the help of high-resolution magnetic resonance imaging techniques, the scientists succeeded in observing how the tissue of a living dragon tree is displaced when subjected to a load. In the future, technical fiber-reinforced lightweight ramifications with structures and behavior similar to that of the natural model could be used to improve architectural supporting structures, bicycle frames, or automobile bodies. The team published the findings in the journal Scientific Reports.

Research groups led by Prof. Thomas Speck, head of the Plant Biomechanics Group and director of the University of Freiburg Botanical Garden, and Prof. Jan G. Korvink, head of the Institute of Microstructure Technology at KIT, developed a new type of experimental setup for the study.

The biologist Linnea Hesse from the University of Freiburg and the medical physicist Dr. Jochen Leipold from the Department of Radiology - Medical Physics at the Freiburg University Medical Center began by imaging the inside of a dragon tree stem and branch in an unloaded state with the help of a magnetic resonance imaging device (MRT).

They then used a mechanical arm controlled from outside of the MRI device to bend the branch and again imaged the internal structure of the plant. The scientists created three-dimensional computer models of the two sets of images.

These models allowed them to compare how the tissues that stabilize the plant behave under these conditions and how they are displaced in response to a load - including both the vascular bundles that transport substances and fluids within the plant and the fiber caps that surround and protect these vascular bundles.

In doing so, the scientists observed the entire branch-stem attachment as well as the individual vascular bundles to track with great precision the changes they undergo when subjected to a load. Depending on their position in the branch, the bundles and the caps stretch lengthwise to absorb a tensile load or are pressed crosswise against the surrounding tissue to cushion it against compressive stress.

The findings can now serve as a basis for developing technical fiber-reinforced lightweight ramifications - with the goal of further improving lightweight and stable materials using a natural model.

Hesse, L., Masselter, T., Leupold, J., Spengler, N., Speck, T., Korvink, J.G.: Magnetic resonance imaging reveals functional anatomy and biomechanics of a living dragon tree. Sci. Rep. 6, 32685; doi: 10.1038/srep32685 (2016).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Karlsruher Institut fur Technologie
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
On-surface chemistry leads to novel products
Basel, Switzerland (SPX) Sep 15, 2016
On-surface chemical reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. The first-step, second-step, and third-step products can be analyzed in detail using a high-resolution atomic force microscope, as demonstrated in Nature Communications by scientists from the Swiss Nanoscience Institute and the Department of Physics at Basel University and their colleagu ... read more


TECH SPACE
Deriving inspiration from the dragon tree

New material with exceptional negative compressibility

UMD physicists discover 'smoke rings' made of laser light

New material to revolutionize water proofing

TECH SPACE
Newest DARPA Challenge: 'Shift Paradigm' With Robot Radio

SES Government solutions to provide the US with a high performance network

The sky's no limit for young space professionals

Datron gets $495 million Afghan radio contract

TECH SPACE
What Happened to Sea Launch

SpaceX scours data to try to pin down cause rocket explosion on launch pad

India To Launch 5 Satellites In September

With operational acceptance complete, Western Range is ready for launch

TECH SPACE
Inferring urban travel patterns from cellphone data

Positioning exact to the millimeter

India to Provide Cost Incentives to Use Homemade Version of GPS

Existing navigation data can help pilots avoid turbulence

TECH SPACE
Malaysia confirms Tanzania debris came from MH370

Hong Kong Airlines buys 9 Airbus aircraft for $2.31 bn

Ukraine plans to deliver world's largest jet to China

MH370 'debris' handed to Australian agency

TECH SPACE
One-pot synthesis towards sulfur-based organic semiconductors

Silicon nanoparticles instead of expensive semiconductors

Memory for future wearable electronics

DARPA Researchers Develop Novel Method for Room-Temperature Atomic Layer Deposition

TECH SPACE
Scientists expect to calculate amount of fuel inside Earth by 2025

Vega to launch ESA's wind mission

China researches high resolution imaging from high orbit

China hi-res SAR imaging satellite sends back pictures

TECH SPACE
Russian metals giant admits red river leak

Taiwan firm fined for polluting Vietnam canal

ICC prosecutors to step up focus on ecological crimes

Containing our 'electromagnetic pollution'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.