Space Industry and Business News  
SOLAR DAILY
'Deforming' solar cells could be clue to improved efficiency
by Staff Writers
Warwick UK (SPX) Jul 31, 2019

illustration only

Solar cells and light sensing technologies could be made more efficient by taking advantage of an unusual property due to deformations and defects in their structures.

Researchers from the University of Warwick's Department of Physics have found that the strain gradient (i.e. inhomogenous strain) in the solar cells, through physical force or induced during the fabrication process, can prevent photo-excited carriers from recombining, leading to an enhanced solar energy conversion efficiency. The results of their experiments have been published in Nature Communications.

The team of scientists used an epitaxial thin film of BiFeO3 grown on LaAlO3 substrate to determine the impact of inhomogenous deformation on the film's ability to convert light into electricity by examining how its strain gradient affects its ability to separate photo-excited carriers.

Most commercial solar cells are formed of two layers creating at their boundary a junction between two kinds of semiconductors, p-type with positive charge carriers (electron vacancies) and n-type with negative charge carriers (electrons). When light is absorbed, the junction of the two semiconductors sustains an internal field splitting the photo-excited carriers in opposite directions, generating a current and voltage across the junction. Without such junctions the energy cannot be harvested and the photo-excited carriers will simply quickly recombine eliminating any electrical charge.

They found that the strain gradient can help prevent recombination by separating the light-excited electron-holes, enhancing the conversion efficiency of the solar cells. The BiFeO3/LaAlO3 film also exhibited some interesting photoelectric effects, such as persistent photoconductivity (improved electrical conductivity). It has potential applications in UV light sensors, actuators and transducers.

Dr Mingmin Yang from the University of Warwick said: "This work demonstrated the critical role of the strain gradient in mediating local photoelectric properties, which is largely overlooked previously. By engineering photoelectric technologies to take advantage of strain gradient, we may potentially increase the conversion efficiency of solar cells and enhance the sensitivity of light sensors.

"Another factor to consider is the grain boundaries in polycrystalline solar cells. Generally, defects accumulate at the grain boundaries, which would induce photo-carrier recombination, limiting the efficiency.

However, in some polycrystalline solar cells, such as CdTe solar cells, the grain boundaries would promote the collection of photo-carriers, where the giant strain gradient might play an important role. Therefore, we need to pay attention to the local strain gradient when we study the structure-properties relations in solar cells and light sensor materials."

Previously, the effect of this strain on efficiency was thought to be negligible. With the increasing miniaturisation of technologies, the effect of strain gradient becomes magnified at smaller sizes. So in reducing the size of a device using one of these films, the magnitude of strain gradient increases dramatically.

Dr Yang adds: "The strain gradient induced effect, such as flexo-photovoltaic effect, ionic migration, etc, would be increasingly important at low dimensions."

Research Report: 'Strain-gradient mediated local conduction in strained bismuth ferrite films'


Related Links
University of Warwick
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Breakthrough material could lead to cheaper, more widespread solar panels and electronics
Lawrence KS (SPX) Jul 22, 2019
Imagine printing electronic devices using a simple inkjet printer - or even painting a solar panel onto the wall of a building. Such technology would slash the cost of manufacturing electronic devices and enable new ways to integrate them into our everyday lives. Over the last two decades, a type of material called organic semiconductors, made out of molecules or polymers, has been developed for such purposes. But some properties of these materials pose a major hurdle that limits their widespread ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Finding alternatives to diamonds for drilling

Electronic chip mimics the brain to make memories in a flash

First of Two Van Allen Probes Spacecraft Ceases Operations

NUS 'smart' textiles boost connectivity between wearable sensors by 1,000 times

SOLAR DAILY
Newly established US Space Agency offers sneak peek at satellite layout

AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

SOLAR DAILY
SOLAR DAILY
An AI technology to reveal the characteristics of animal behavior only from the trajectory

European Galileo satellite navigation system resumes Initial Services

Europe's Galileo GPS system back after six-day outage

Europe's GPS rival Galileo suffers outage

SOLAR DAILY
Space-enabled app for pilots takes to the skies

$600M helicopter sale to Greece approved by State Department

Anti-collision software appears on F-35s, seven years ahead of schedule

Bulgarian president vetoes costly deal to buy US F-16s

SOLAR DAILY
Scientists send light through 2D crystal layer in quantum computing leap

Speediest quantum operation 200 times faster than before

NIST's quantum logic clock returns to top performance

EU fines chipmaker Qualcomm 242 mn euros for 'predatory' pricing

SOLAR DAILY
Tracking Smoke From Fires to Improve Air Quality Forecasting

Commercial Space Ride Secured for NASA's New Air Pollution Sensor

Chaos theory produces map for predicting paths of particles emitted into the atmosphere

Earth's Shining Upper Atmosphere - From the Apollo Era to the Present

SOLAR DAILY
Sri Lanka orders return of smuggled British garbage

Chile's mining waste poses silent threat to humans on multiple fronts

Danish study finds 95 percent of dead petrels ingested plastic

'Bigger problems' for Trump than plastic straws









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.