Space Industry and Business News  
NANO TECH
Deep-sea osmolyte makes biomolecular machines heat-tolerant
by Staff Writers
Sapporo, Japan (SPX) Jan 24, 2020

In the motility assay, microtubules are propelled by kinesin motors attached to the substrate surface.

Researchers have discovered a method to control biomolecular machines over a wide temperature range using deep-sea osmolyte trimethylamine N-oxide (TMAO). This finding could open a new dimension in the application of artificial machines fabricated from biomolecular motors and other proteins.

Biomolecular motors are the smallest natural machines that keep living organisms dynamic. They can generate force and perform work on their own by consuming chemical energy. In recent years, reconstructed biomolecular motors have appeared as promising substitutes of synthetic motors and expected to be key components in biomimetic artificial micro- or nano-devices. However, reconstructed biomolecular motors lose their ability to function due to thermal instability in artificial environments.

Tasrina Munmun, Arif Md. Rashedul Kabir, Kazuki Sada and Akira Kakugo of Hokkaido University and Yukiteru Katsumoto of Fukuoka University were inspired by seeing how proteins remain stable in living organisms such as sharks, teleosts, skates, and crabs that survive in harsh environments like deep sea hydrothermal vents or under thermal perturbations. Although proteins are generally denatured by heat, the proteins in deep-sea animals remain stable and active with heat thanks to TMAO.

"Based on this fascinating defense mechanism in deep-sea animals, we attempted to control the activity of kinesin, a biomolecular motor associated with microtubule proteins, over a wide temperature range," said Arif Md. Rashedul Kabir. To investigate the activity of kinesins, the team conducted in vitro motility assays in which kinesin motors propelled the microtubules on a two-dimensional substrate.

According to the study published in Chemical Communications, they discovered that TMAO suppresses thermal denaturation of kinesins in a concentration dependent manner. Within a temperature range of 22-46C, kinesins propelled microtubules for a prolonged time (almost 2.5 times longer) when TMAO was present.

This shows the team successfully controlled the dynamics between kinesins and microtubules over a broad temperature range. "This study is the first example showing successful utilization of a deep-sea osmolyte in maintaining biomolecular motors for a prolonged time over a wide temperature range in engineered environments," Arif Md. Rashedul Kabir commented.

Arif Md. Rashedul Kabir continued, "The idea of utilizing natural defense mechanisms against heat-induced inactivation of proteins and enzymes will now be encouraged further."

"Our work will open a new dimension in sustainable applications of reconstructed biomolecules which will benefit various fields including biomimetic engineering, biochemical and biomedical engineering as well as materials science," Akira Kakugo added.

Research paper


Related Links
Hokkaido University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
Nanobubbles in nanodroplets
Freiburg, Germany (SPX) Jan 13, 2020
A team headed by Professor Frank Stienkemeier at Freiburg's Institute of Physics and Dr. Marcel Mudrich, professor at the University of Aarhus in Denmark, has observed the ultrafast reaction of nanodroplets of helium after excitation with extreme ultraviolet radiation (XUV) using a free-electron laser in real time. The researchers have published their findings in the latest issue of Nature Communications. Lasers generating high-intensity and ultra-short XUV and X-ray pulses give researchers new op ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
A better building block for creating new materials

Protein pores packed in polymers make super-efficient filtration membranes

Tethers Unlimited reports successful operation of space-debris removal device

Crab-shell and seaweed compounds spin into yarns for sustainable and functional materials

NANO TECH
Protecting wideband RF systems in congested electromagnetic environments

General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

NANO TECH
NANO TECH
Using artificial intelligence to enrich digital maps

Galileo now replying to SOS messages worldwide

China's international journal Satellite Navigation launched

FAA warns military training exercise could jam GPS signals in southeast, Caribbean

NANO TECH
NASA creates technologies to gather Great Observatory Science from a balloon

Gulfstream Aerospace Corp. receives $80M for C-20 and C-37 maintenance

National Technologies nets $104.9 million for Marine One support

Russian space industry proposes fleet of airships for critical mission

NANO TECH
Dutch tech firm caught in US-China row

Generation and manipulation of spin currents for advanced electronic devices

Nano antennas for data transfer

Growing strained crystals could improve performance of perovskite electronics

NANO TECH
NASA, Partners name ocean studying satellite for noted Earth scientist

QinetiQ to play key role in maximising European capabilities in operational earth observation

Agreement on data utilization of earth observation satellite with FAO

Ozone-depleting substances caused half of late 20th-century Arctic warming, says study

NANO TECH
Researchers to conduct major Japan ocean microplastics survey

Faced with high smog levels, Milan to ban cars on Sunday

Red Sea huge source of air pollution, greenhouse gases: study

Moscow admits building highway via radioactive site









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.