![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Brooks Hays Baltimore (UPI) Nov 3, 2015
Diamonds are much more common than scientists thought. Researchers at John Hopkins University predict deep Earth to be littered with diamonds. Until now, scientists thought diamonds were formed one of two ways, via the oxidation of methane or the chemical reduction of carbon dioxide within moving fluids. These two types of diamond formation require a rather unique set of geochemical circumstances, hints their relative rarity and value. But a new study, published in the journal Nature Communications, suggests a much more simple and common scenario can yield diamond formation. Using chemical models, researchers showed diamonds can form as water slowly becomes more acidic moving from one rock formation to another. "The more people look, the more they're finding diamonds in different rock types now," study author Dimitri A. Sverjensky, a geochemist at John Hopkins, said in a press release. "I think everybody would agree there's more and more environments of diamond formation being discovered." Of course, this new formation scenario -- just like the traditional two -- requires intense pressure and extreme temperatures, between 1,650 and 2,000 degrees Fahrenheit. Such scenarios naturally occur only deep inside the Earth's mantle. This is one of the reasons Sverjensky doesn't expect his new research to disrupt the diamond market. Easily accessible diamonds are made possible by magma eruption, which push the diamonds of the deep Earth up towards the surface. If there are a lot more diamonds deep down below, that doesn't mean they'll be making an appearance any time soon. What's more, the abundance of diamonds the new research predicts aren't the kind measured in carats but microns, invisible to the naked eye. Still, Sverjensky says his research -- conducted with the help of doctoral student Fang Huang -- is significant because it will help scientists better understand the fluid dynamics of deep Earth, the slow-moving, least-understood portion of the carbon cycle that enables life on our planet. "Fluids are the key link between the shallow and the deep Earth," Sverjensky said. "That's why it's important."
Related Links Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |