Space Industry and Business News  
TIME AND SPACE
Daylight saving time does not misalign human cycles
by Staff Writers
Seville, Spain (SPX) Dec 13, 2019

.

Professor Jose Maria Martin-Olalla, from the University of Seville, has published a new report where the impact of seasonal clock-changing in daily life is analyzed from time use surveys in United States, Spain, Italy, France and Great Britain. These countries have faced seasonal regulation of clocks for more than forty years.

The results state that human cycles are not misaligned by Daylight Saving Time regulations. The report also shows the impact of latitude in the seasonal adaptation of human cycles, jeopardizing the current position of the European Commission which pushes for a unique regulation in the European Union

The report was released this month by Scientfic Reports (an open-access peer-reviewed scientific journal from Springer Nature Publishing group) in the Collection Social Physics and focuses in the seasonal deviations of the sleep/wake cycle and of the labor cycle. None of these human cycles is found to exhibit significant seasonal deviations in week days. This is a major, unnoticed outcome of the seasonal regulation of clocks. After continued, predictable seasonal clock changing arrangements virtually nobody delays their activity in summer or advances it in winter, signaling the acceptance of the practice in modern societies.

That way the seasonal clock arrangements promote stable year-round social timing and, at the same time, a seasonal adaptation of human activity, which advances in spring-summer, when daytime is the longest, and delays in autumn-winter, when daytime is the shortest.

The sleep/wake cycle in week ends, when free preferences are most frequent, shows a distinct pattern. Bedtimes delay in summer, following the delay in sunset times, a behaviour that plays against the regulation of clocks, which advanced them after the spring transition. Nonetheless, wake-up times advance in summer, also following the advance in sunrise times.

This behaviour now amplifies the advance of clock time after the spring transition. Overall the best explanation for these opposite findings is that human cycles are not misaligned by the size and direction of DST regulations, as they still track sunrises and sunsets. Lack of misalignment explains the success of DST regulations in modern societies.

Summer time arrangements in Europe
The report also shows the impact of latitude in the seasonal adaptation of human cycles, an issue of the utmost importance in Europe. Human cycles in low latitude countries (USA, ESP and ITA) exhibit larger and more frequent seasonal deviations than those at higher latitudes (FRA and GBR), despite the light and dark cycle displays larger seasonality in the latter case.

Martin-Olalla explains this paradox saying that above a circle of latitude, solar deviations are large enough and fast enough so that human cycles are less able to track them accurately. There, clock time plays the leading synchronizing role and, eventually, gives rise to a preference for discontinuing DST regulations which part ways with the seasonal regulation of human activity. The current wave of DST discussions is promoted by this fact in Northern countries like Finland.

On the contrary, below that circle of latitude solar seasonality is smaller but has a greater impact on human cycles, which exhibit fine tuning with solar activity. At this range, societies find in DST regulations a convenient, effective way of promoting circannual human cycles adapted to seasons.

The practice helps to keep the sunrise as a lodestar for the start of human activity; helps to avoid exposition to noon insolation and overheating, an important issue in the Tropics (it should be stressed that below the 47th circle of latitude, the latitude of Switzerland and Lake Superior, noon insolation is characteristically tropical in summer). Finally it helps both lark people (those with propensity to morning activity) and owl people (those with propensity to evening activity) get timely activated through seasons: not too late and not too early.

The impact of latitude jeopardizes the current position of the European Commission which pushes for a unique regulation in the European Union. However the Union exhibits vividly different seasonal variations in the light and dark cycle. They range from a 98% noon insolation efficiency in summer at the 35th circle of latitude (Malta, Chipre) with less than 3h of spread in sunrise times to a 24h spread of sunrise times at the 70th circle of latitude (Finland Lapland), where seasonal clock changing is virtually meaningless. Therefore the report urges the European Commission to rethink its position and allow opts-out on this issue which would stratify with latitude as in Australia, Chile and Brazil. A video posted in youtube also describes the problem faced by the European Commission.

This is the third manuscript authored by Martin-Olalla analyzing basic human activity and the impact of latitude. Previously a report forward the synchronizing role of the winter day, and a second report, described seasonal synchronizing patterns in industrial and pre-industrial societies from the Equator to the 55th circle of latitude. Both manuscripts were also published in Scientific Reports.

Research paper


Related Links
University of Seville
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
JILA team demonstrates model system for distribution of more accurate time signals
Washington DC (SPX) Oct 25, 2019
JILA physicists and collaborators have demonstrated the first next-generation "time scale" - a system that incorporates data from multiple atomic clocks to produce a single highly accurate timekeeping signal for distribution. The JILA time scale outperforms the best existing hubs for disseminating official time worldwide and offers the possibility of providing more accurate time to millions of customers such as financial markets and computer and phone networks. The novel time scale architecture co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Tiny magnetic particles enable new material to bend, twist, and grab

Bio-inspired hydrogel can rapidly switch to rigid plastic

Life of a foam

Liquid flow is influenced by a quantum effect in water

TIME AND SPACE
General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

Lockheed Martin gets $3.3B contract for communications satellite work

GenDyn nets $783M for next-gen Navy MUOS operations

TIME AND SPACE
TIME AND SPACE
China launches two more BeiDou satellites for GPS system

Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

TIME AND SPACE
First commercial electric plane takes flight in Canada

Troubled Hong Kong Airlines allowed to keep operating

First commercial electric plane takes flight in Canada

AFRL illuminates flight lines with next generation light cart

TIME AND SPACE
A platform for stable quantum computing, a playground for exotic physics

Transistors can now both process and store information

Toward more efficient computing, with magnetic waves

A record-setting transistor

TIME AND SPACE
How saving the ozone layer in 1987 slowed global warming

SubX shows promise for improved monthly weather forecasts

Scientists deploy ocean floats to peer into Earth's interior

Chinese satellites contribute to pollution control of plateau lakes

TIME AND SPACE
Bangladesh tears down brick kilns to fight toxic smog

Household dust hosts toxic chemicals from LCD screens

For some corals, meals can come with a side of microplastics

In Spain, how nutrients poisoned one of Europe's largest saltwater lagoons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.