Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
Dark matter map begins to reveal the universe's early history
by Staff Writers
Tokyo, Japan (SPX) Jul 07, 2015


A 14 arc minute by 9.5 arc minute section of a Hyper Suprime-Cam image, with contour lines showing the dark matter distribution. A higher resolution images is available by clicking the image. An image with just the background galaxies is available here. There is also a scalable image available in color and black and white. (Credit: NAOJ/HSC Project). For a larger version of this image please go here. Watch a video on the research here.

Researchers from the National Astronomical Observatory of Japan (NAOJ), the University of Tokyo and other institutions have begun a wide-area survey of the distribution of dark matter in the universe using Hyper Suprime-Cam, a new wide-field camera installed on the Subaru Telescope in Hawai'i. Initial results from observations covering an area of 2.3 square degrees on the sky toward the constellation Cancer revealed nine large concentrations of dark matter, each the mass of a galaxy cluster.

Surveying how dark matter is distributed and how the distribution changes over time is essential to understanding the role of dark energy that controls the expansion of the universe. These first results demonstrate that astronomers now have the techniques and tools to understand dark energy. The next step is for the research team to expand the survey to cover a thousand square degrees on the sky, and thereby unravel the mystery of dark energy and the expansion of the universe.

Mapping dark matter over a wide region is key to understanding the properties of dark energy, which controls the expansion of the universe. These early results demonstrate that with current research techniques and Hyper Suprime-Cam, the team is now ready to explore how the distribution of dark matter in the universe has changed over time, unravel the mystery of dark energy, and explore the universe's expansion history with great detail.

Hyper Suprime-Cam lead developer, Dr. Satoshi Miyazaki, from the National Astronomical Observatory of Japan's Advanced Technology Center and leader of the research team, praised the ability of the HSC for this work. "Now we know we have the both a technique and a tool for understanding dark energy. We are ready to use Hyper Suprime-Cam to create a 1000 square degree dark matter map that will reveal the expansion history of the universe with precise detail."

Using Weak Lensing by Dark Matter to Study Dark Energy's Effects:
Ever since 1929, when astronomer Edwin Hubble discovered that the universe is expanding, astronomers used a working model that had the rate of expansion slowing down over time. Gravitational attraction, until recently the only known force acting between galaxies, works against expansion. However, in the 1990s, studies of distant supernovae showed that the universe is expanding faster today than it was in the past.

This discovery required a dramatic shift in our understanding of physics: either there's some kind of "dark energy" with a repulsive force that forces galaxies apart, or the physics of gravity needs some fundamental revision.

To unravel the mystery of the universe's accelerating expansion, it is helpful to look at the relationship between the rate expansion of the universe and the rate at which astronomical objects form. For example, if the universe is expanding quickly, it will take longer for matter to coalesce and form galaxies. Conversely, if the universe is expanding slowly, it is easier for structures like galaxies to form.

In effect, there's a direct link between the history of structure formation in the universe, and the history of the universe's expansion. The challenge in confirming the existence of dark matter and its effect on expansion is that most of the matter in the universe is dark and does not emit light. It cannot be detected directly by telescopes, which are light-collecting machines.

One technique that can overcome this challenge is the detection and analysis of "weak lensing". A concentration of dark matter acts as a lens that bends light coming from even more distant objects. By analyzing how that background light is bent and how the lensing distorts the shapes of the background objects, it's possible to determine how dark matter is distributed in the foreground.

This analysis of dark matter and its effects lets astronomers determine how it has assembled over time. The assembly history of dark matter can be related to the expansion history of the universe, and should reveal some of the physical properties of dark energy, its strength and how it has changed over time.

To get a sufficient amount of data, astronomers need to observe galaxies more than a billion light-years away, across an area greater than a thousand square degrees (about one fortieth of the entire sky). The combination of the Subaru telescope, with its 8.2-meter diameter aperture, and Suprime-Cam, Hyper Suprime-Cam's predecessor, with a field of view of a tenth of a square degree (comparable to the size of the Moon), has been one of the most successful tools in the search of faint distant objects over a wide area of sky.

However, even for this powerful combo, surveying a thousand degrees of sky at the necessary depth isn not realistic. "This is why we spent 10 years to develop Hyper Suprime-Cam, a camera with the same of better image quality as Suprime-Cam, but with a field of view over seven times larger," said Dr. Satoshi Miyazaki.

Hyper Suprime-Cam was installed on the Subaru Telescope in 2012. Following test observations, it was made available for open use by the astronomy community in March 2014. A "strategic" observing program, consisting of more than 300 nights of observing over five years is also underway. The camera, with 870 million pixels, delivers images that cover an area of sky as large as nine full moons in a single exposure, with extremely little distortion, at a fine resolution of seven thousandths of a degree (0.5 arc seconds).

Researchers from NAOJ, the University of Tokyo, and collaborators analyzed test data from Hyper Suprime-Cam's commissioning to see how well it could map dark matter using the weak lensing technique. The data from a two-hour exposure covering 2.3 square degrees revealed crisp images of numerous galaxies. By measuring their individual shapes, the team created a map of the dark matter hiding in the foreground. The result was the discovery of nine clumps of dark matter, each weighing as much a galaxy cluster. The reliability of the weak lensing analysis, and the resulting dark matter maps, have been confirmed by observations with other telescopes that show actual galaxy clusters corresponding to the dark matter clumps discovered by Hyper Suprime-Cam. They utilized the archived Deep Lens Survey (PI: Tony Tyson, LSST Chief Scientist) data for the optical cluster identification.

The number of galaxy clusters by Hyper Suprime-Cam exceeds predictions from current models of the universe's early history. As the research team expands the dark matter map to their goal of a thousand square degrees, the data should reveal whether this excess is real or just a statistical fluke. If the excess is real, it suggests that there wasn't as much dark energy as expected in the past, which allows the universe to expand gently and stars and galaxies to form quickly.

Using weak lensing to map dark matter map is a way to discover astronomical objects using their mass, to learn that something exists and how much it weighs at the same time. It gives a direct measurement of mass that is typically unavailable when using other methods of discovery (Note 2). Therefore, mass maps of dark matter are an essential tool for understanding the expansion history of the universe precisely and accurately.

These are the first scientific results from Hyper Suprime-Cam and were accepted for publication in the July 1, 2015 edition of the Astrophysical Journal. (Miyazaki et al. 2015, ApJ 807, 22, "Properties of Weak Lensing Clusters Detected on Hyper Suprime-Cam 2.3 Square Degree Field".) This research has received Grants-in-Aid for Scientific Research (18072003 and 26800093) and World Premier International Research Center Initiative support through the Japanese Society for the Promotion of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Subaru Telescope
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Over 800 dark galaxies found in the famous Coma Cluster
Washington DC (SPX) Jun 25, 2015
A group of researchers from the Stony Brook University (the State University of New York) and the National Astronomical Observatory of Japan has discovered 854 "ultra dark galaxies" in the Coma Cluster by analyzing archival data from the Subaru Telescope. The discovery of 47 such mysterious dark galaxies was a surprising find in 2014, and the new discovery of more than 800 suggests galaxy cluste ... read more


STELLAR CHEMISTRY
Ball delivers optical reference units for GRACE follow-on mission

'Pac-Man' space probe to gobble-up space debris

Silica spiky screws could boost industrial coatings, additive manufacturing

New conductive ink for electronic apparel

STELLAR CHEMISTRY
Navy engineer invents new data transmission system

Fourth MUOS arrives in Florida for August launch

Airbus DS unveils new mobile welfare communication portfolio

Britain looks to replace tactical radios

STELLAR CHEMISTRY
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

STELLAR CHEMISTRY
Russian, Chinese Navigation Systems to Accommodate BRICS Members

Russia, India Cooperate on Space Exploration, Glonass Satellite System

China's Beidou navigation system more resistant to jamming

Global Positioning System: A Generation of Service to the World

STELLAR CHEMISTRY
Two dead as F-16, Cessna collide in South Carolina

Computer glitch grounds United flights for an hour

Solar Impulse 2 pilot becomes aviation legend

Airbus and Mahindra to make military choppers in India

STELLAR CHEMISTRY
The quantum middle man

Fabricating inexpensive, high-temp SQUIDs for future electronic devices

Spintronics advance brings wafer-scale quantum devices closer to reality

Could black phosphorus be the next silicon?

STELLAR CHEMISTRY
Estimating Earth's last pole reversal using radiometric dating

NASA data shows surfer-shaped waves in near-Earth space

Oregon experiments open window on landscape formation

Sentinel-2A completes critical first days in space

STELLAR CHEMISTRY
Pope urges dialogue, launches environmental SOS in Ecuador

The Good, the Bad, and the Algae

Water used for hydraulic fracturing varies widely across United States

China's footprint getting greener




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.