Space Industry and Business News  
Dark Matter Charted Out To Five Billion Light Years

The relationship between ordinary and dark matter in a galaxy. On the left is the ordinary matter that makes up the galaxy and its shape indicates how it was assembled. On the right the map of dark matter shows how it extends over a much larger area than the visible part of the galaxy.
by Staff Writers
London UK (SPX) Apr 19, 2007
Most of the matter in the Universe is not the ordinary kind made up of protons, neutrons, and electrons, but an elusive "dark matter" detectable only from its gravity. Like a tenuous gas, dark matter is all around us - it goes through us all the time without us noticing - but tends to collect in large quantities around galaxies and clusters of galaxies and makes up about one-sixth of the mass of the Universe.

In his talk on Tuesday 17 April at the Royal Astronomical Society National Astronomy Meeting in Preston, Dr Ignacio Ferreras of Kings College London will present the maps of the distribution of "ordinary" and dark matter in nine galaxies out to a distance of five billion light-years from the Sun.

Dr Ferreras worked with Dr Prasenjit Saha (University of Zurich, Switzerland) and Professor Scott Burles (Massachusetts Institute of Technology, USA) to take advantage of a rare astronomical phenomenon known as 'gravitational lensing'. The galaxies they studied serendipitously lie in front of quasars, which are bright sources of light at even greater distances.

The gravity of the nearer galaxy and dark matter distorts the quasar light, causing the quasar to be seen as two or four images. The placement of these mirage images, studied using new theoretical techniques in gravitational lensing, makes it possible to measure the total mass and effectively gives scientists a telescope for dark matter!

By analysing the starlight from the galaxies using stellar evolution theory, it is possible to measure the mass of the stars they contain. Combining these ideas with archival data from the Hubble Space Telescope, Dr Ferreras and his colleagues were able to make dark-matter maps.

Current theories of galaxy formation can explain some but not all of these new findings. After the Big Bang, gas should have fallen towards the centres of dark-matter halos, there igniting to form the stars that go on to make up a galaxy.

But why is there a higher proportion of dark matter in more massive galaxies? And had these galaxies already finished forming five billion years ago? These questions will only be answered by future theories of galaxy formation.

Related Links
Kings College London
Stellar Chemistry, The Universe And All Within It
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Clustering Of Quasars 10 Billion Light Years Away Determine Relationship With Dark Matter
Princeton NY (SPX) Feb 12, 2007
Using a map of more than 4,000 luminous quasars in the distant universe, scientists from the Sloan Digital Sky Survey (SDSS-II) have shown that these brilliant beacons are strongly clumped, with huge quasar superclusters separated by vast stretches of empty space. The strong clustering shows that the quasars lie within massive concentrations of dark matter.







  • All Of Russia Will Have Internet And Phone Access
  • Wildblue High-Speed Internet Via Satellite Triples Capacity With New Satellite
  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb

  • Russia Puts 16 Foreign Satellites Into Orbit
  • Indian Space Agency Set For First Commercial Launch Of Foreign Satellite
  • Russia To Launch Four US Satellites In May
  • PSLV-C8 To Be Launched On April 23

  • Nondestructive Testing Keeps Bagram Aircraft Flying
  • New FAA Oceanic Air Traffic System Designed By Lockheed Martin Fully Operational
  • NASA Seeks New Research Proposals
  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming

  • Raytheon To Supply Canada With Enhanced Position Location Reporting System Terminals
  • Intelsat To Test Internet Routing In Space For The US Military
  • Northrop Grumman And LockMart Team Up For Integrated Air And Missile Defense Battle Command
  • Harris Donates OS/COMET For Use In FalconSAT Program

  • Colombia Launches First Satellite
  • A New Generation Of Space Tethers
  • Rolls-Royce Selects Bristol University For Composites Research
  • Tests Demonstrate Functionality Of Next Generation Processor Router For TSAT

  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office
  • Kathryn Kynard Plays Key Role In Ares I Upper Stage Engine Development
  • William Shernit Joins Intelsat General As President and CEO

  • Scientists Meet To Review Envisat Results After Five Years Of Operations
  • US Uses Landsat Satellite Data To Fight Hunger And Poverty
  • NOAA And NASA Restore Climate Sensor To Upcoming NPP Satellite
  • High-Resolution Images Herald New Era In Earth Sciences

  • Northrop Grumman Team OCX Bids On The GPS Next Generation Control Segment Contract
  • China Launches Compass Navigation Satellite
  • GPS Significantly Impacted By Powerful Solar Radio Burst
  • Russia To Expand Glonass Satellite Group By Year End

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement