Space Industry and Business News  
FLORA AND FAUNA
DNA design that anyone can do
by Staff Writers
Boston MA (SPX) Jan 04, 2019

MIT and Arizona State University researchers have created a computer program that can translate drawings of arbitrary shapes into two-dimensional structures made of DNA.

Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.

Until now, designing such structures has required technical expertise that puts the process out of reach of most people. Using the new program, anyone can create a DNA nanostructure of any shape, for applications in cell biology, photonics, and quantum sensing and computing, among many others.

"What this work does is allow anyone to draw literally any 2-D shape and convert it into DNA origami automatically," says Mark Bathe, an associate professor of biological engineering at MIT and the senior author of the study.

The researchers published their findings in the Jan. 4 issue of Science Advances, and the program, called PERDIX, is available online. The lead authors of the paper are Hyungmin Jun, an MIT postdoc, and Fei Zhang, an assistant research professor at Arizona State University. Other authors are MIT research associate Tyson Shepherd, recent MIT PhD recipient Sakul Ratanalert, ASU assistant research scientist Xiaodong Qi, and ASU professor Hao Yan.

Automated design
DNA origami, the science of folding DNA into tiny structures, originated in the early 1980s, when Ned Seeman of New York University proposed taking advantage of DNA's base-pairing abilities to create arbitrary molecular arrangements. In 2006, Paul Rothemund of Caltech created the first scaffolded, two-dimensional DNA structures, by weaving a long single strand of DNA (the scaffold) through the shape such that DNA strands known as "staples" would hybridize to it to help the overall structure maintain its shape.

Others later used a similar approach to create complex three-dimensional DNA structures. However, all of these efforts required complicated manual design to route the scaffold through the entire structure and to generate the sequences of the staple strands. In 2016, Bathe and his colleagues developed a way to automate the process of generating a 3-D polyhedral DNA structure, and in this new study, they set out to automate the design of arbitrary 2-D DNA structures.

To achieve that, they developed a new mathematical approach to the process of routing the single-stranded scaffold through the entire structure to form the correct shape. The resulting computer program can take any free-form drawing and translate it into the DNA sequence to create that shape and into the sequences for the staple strands.

The shape can be sketched in any computer drawing program and then converted into a computer-aided design (CAD) file, which is fed into the DNA design program. "Once you have that file, everything's automatic, much like printing, but here the ink is DNA," Bathe says.

After the sequences are generated, the user can order them to easily fabricate the specified shape. In this paper, the researchers created shapes in which all of the edges consist of two duplexes of DNA, but they also have a working program that can utilize six duplexes per edge, which are more rigid. The corresponding software tool for 3-D polyhedra, called TALOS, is available online and will be published soon in the journal ACS Nano. The shapes, which range from 10 to 100 nanometers in size, can remain stable for weeks or months, suspended in a buffer solution.

"The fact that we can design and fabricate these in a very simple way helps to solve a major bottleneck in our field," Bathe says. "Now the field can transition toward much broader groups of people in industry and academia being able to functionalize DNA structures and deploy them for diverse applications."

Nanoscale patterns
Because the researchers have such precise control over the structure of the synthetic DNA particles, they can attach a variety of other molecules at specific locations. This could be useful for templating antigens in nanoscale patterns to shed light on how immune cells recognize and are activated by specific arrangements of antigens found on viruses and bacteria.

"How nanoscale patterns of antigens are recognized by immune cells is a very poorly understood area of immunology," Bathe says. "Attaching antigens to structured DNA surfaces to display them in organized patterns is a powerful way to probe that biology."

Another key application is designing light-harvesting circuits that mimic the photosynthetic complexes found in plants. To achieve that, the researchers are attaching light-sensitive dyes known as chromophores to DNA scaffolds. In addition to harvesting light, such circuits could also be used to perform quantum sensing and rudimentary computations. If successful, these would be the first quantum computing circuits that can operate at room temperature, Bathe says.


Related Links
Massachusetts Institute of Technology
Darwin Today At TerraDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


FLORA AND FAUNA
Engineers, zoologists reveal how gulls 'wing morph' for stable soaring
Toronto, Canada (SPX) Jan 03, 2019
A unique collaboration between University of British Columbia (UBC) zoologists and U of T Engineering's aviation expert Professor Philippe Lavoie provides new insights into how gulls configure their wing shape - known as wing morphing - to stabilize their flight. The findings could be used to design more efficient flying vehicles, including soaring drones for farming or environmental monitoring. Although a gliding bird's ability to stabilize its flight path is as critical as its ability to produce ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

FLORA AND FAUNA
New metamaterial offers exceptional sound transportation

Silver nanowires promise more comfortable smart textiles

New composite advances lignin as a renewable 3D printing material

Rippling: What happens when layered materials are pushed to the brink

FLORA AND FAUNA
DARPA awards 6 teams during final Spectrum Collaboration Challenge Qualifier

Military Santa tracker live despite US government shutdown

Satellite study proves global quantum communication will be possible

India launches military communications satellite

FLORA AND FAUNA
FLORA AND FAUNA
First GPS III satellite launched, moving toward operational orbit

First Lockheed Martin-built GPS 3 satellite responding to commands

First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

Spire Taps Galileo for Space-Based Weather Data

FLORA AND FAUNA
Israel to open new Red Sea airport in January

Qatar Airways buys 5% stake in China Southern Airlines

Air Force establishes office at Tyndall AFB to guide five-year rebuilding process

Israel develops wing components to make F-35s invisible to radar

FLORA AND FAUNA
Quantum chemistry on quantum computers

Electronics of the future: A new energy-efficient mechanism using the Rashba effect

Physicists record 'lifetime' of graphene qubits

Russian researchers explore the prospects for creating photonic integrated circuits

FLORA AND FAUNA
Reliable tropical weather pattern to change in a warming climate

Research reveals 'fundamental finding' about Earth's outer core

First detection of rain over the ocean by navigation satellites

Declining particulate pollution led to increased ozone pollution in China

FLORA AND FAUNA
Survey finds Texas' Gulf of Mexico shoreline has most trash

Fish bones yield new tool for tracking coal ash contamination

Anglo American restarts iron ore mine in Brazil

Lithuania wraps tree in plastic to protest Christmas consumerism









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.