Space Industry and Business News  
TIME AND SPACE
Cosmic fountain powered by giant black hole
by Staff Writers
Huntsville AL (SPX) Dec 17, 2018

Abell 2597 is powered by a giant black hole

Before electrical power became available, water fountains worked by relying on gravity to channel water from a higher elevation to a lower one. This water could then be redirected to shoot out of the fountain and create a centerpiece for people to admire.

In space, awesome gaseous fountains have been discovered in the centers of galaxy clusters. One such fountain is in the cluster Abell 2597. There, vast amounts of gas fall toward a supermassive black hole, where a combination of gravitational and electromagnetic forces sprays most of the gas away from the black hole in an ongoing cycle lasting tens of millions of years.

Scientists used data from the Atacama Large Millimeter/submillimeter Array (ALMA), the Multi-Unit Spectroscopic Explorer (MUSE) on ESO's Very Large Telescope (VLT) and NASA's Chandra X-ray Observatory to find the first clear evidence for the simultaneous inward and outward flow of gas being driven by a supermassive black hole.

Cold gas falls toward the central black hole, like water entering the pump of a fountain. Some of this infalling gas (seen in the image as ALMA data in yellow) eventually reaches the vicinity of the black hole, where the black hole's gravity causes the gas to swirl around with ever-increasing speeds, and the gas is heated to temperatures of millions of degrees. This swirling motion also creates strong electromagnetic forces that launch high-velocity jets of particles that shoot out of the galaxy.

These jets push away huge amounts of hot gas detected by Chandra (purple) surrounding the black hole, creating enormous cavities that expand away from the center of the cluster. The expanding cavities also lift up clumps of warm and cold gas and carry them away from the black hole, as observed in the MUSE/VLT data (red).

Eventually this gas slows down and the gravitational pull of material in the center of the galaxy causes the gas to rain back in on the black hole, repeating the entire process.

A substantial fraction of the three billion solar masses of gas are pumped out by this fountain and form a filamentary nebula - or cosmic "spray" - that spans the innermost 100,000 light years of the galaxy.

These observations agree with predictions of models describing how matter falling towards black holes can generate powerful jets. Galaxy clusters like Abell 2597, containing thousands of galaxies, hot gas, and dark matter, are some of the largest structures in the entire Universe. Abell 2597 is located about 1.1 billion light years from Earth.

A paper by Grant Tremblay (Harvard-Smithsonian Center for Astrophysics) et al. describing these results appeared in the September 18, 2018 issue of The Astrophysical Journal (arXiv:1808.00473). NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.


Related Links
Chandra X-ray
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Four New Gravitational Wave Events from Black Hole Mergers
College Park MD (SPX) Dec 03, 2018
Scientists announced four new observations of gravitational waves - ripples in the fabric of spacetime - from the final moments of black hole mergers. The twin Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors - located in Livingston, Louisiana, and Hanford, Washington - and the Virgo detector located near Pisa, Italy, detected the gravitational wave events. The Virgo Collaboration and the LIGO Scientific Collaboration (LSC) announced the discoveries on December 1, 2018, a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Deep-learning technique reveals 'invisible' objects in the dark

Researchers develop mathematical solver for analog computers

TIME AND SPACE
US Space Force Takes Over Satellite Purchases to Boost Warfighter Communication

Shape-shifting origami could help antenna systems adapt on the fly

Global Ku-Band HTS platform provides government customers with unprecedented solutions

Boeing tapped by Air Force for jam-resistant satellite comms terminals

TIME AND SPACE
TIME AND SPACE
Lockheed Martin prepares GPS III satellite for SpaceX launch

First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

Spire Taps Galileo for Space-Based Weather Data

UK will build its own satellite-navigation system after Brexit

TIME AND SPACE
Bell Boeing to conduct engineering work on the V-22 Osprey

Germany opens negligent homicide probe in Mali Airbus chopper crash

Aircraft readiness goals for 2019 unlikely to be reached, officials say

Navy taps Sikorsky for database to support CH-53K helicopters

TIME AND SPACE
Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

Copper compound as promising quantum computing unit

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation

Bringing advanced microelectronics to revolutionary defense applications

TIME AND SPACE
First Radar Image from ICEYE-X2 Published Only A Week After Launch

Experiments at PPPL show remarkable agreement with satellite sightings

Ball Aerospace delivers pollution monitoring instrument to NASA

exactEarth AIS Payload on the PAZ Radar Satellite is Now Live

TIME AND SPACE
Madrid temporarily bans 'oldest, most polluting' vehicles

Waste plant fire stokes Italy garbage crisis

Slow recycler Turkey seeks better uses for its trash

Lynas mulls 'legal options' after Malaysia imposes new conditions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.