Space Industry and Business News  
STELLAR CHEMISTRY
Cosmic Source Found For Mysterious 'fast Radio Burst'
by Staff Writers
Ithaca NY (SPX) Jan 05, 2017


Fast radio bursts, or FRBs, were first seen about 10 years ago. In November 2012, Cornell astronomers using the Arecibo Observatory captured its first FRB - which lasted three one-thousandths of a second. Laura Spitler, discovered it as a postdoctoral researcher sifting through radio telescope data. It was called FRB 121102. Until then, only the Parkes Radio Telescope in New South Wales, Australia, had discovered a handful of previously known FRBs.

Cornell University researchers and a global team of astronomers have uncovered the cosmological source of a sporadically repeating milliseconds-long "fast radio burst."

Once thinking these bursts had emanated from within the Milky Way galaxy, or from cosmic neighbors, the astronomers now confirm that they are long-distance flashes from across the universe - more than 3 billion light-years away, according to a new report published Jan. 4 in the journal Nature.

"These radio flashes must have enormous amounts of energy to be visible from over 3 billion light-years away," said lead author Shami Chatterjee, Cornell senior research associate in astronomy. Other Cornell researchers on this paper, "Direct Localization of a Fast Radio Burst and Its Enigmatic Counterpart," include James Cordes, the George Feldstein Professor of Astronomy; and Robert Wharton, doctoral student in astronomy.

Astronomers appreciate this breakthrough news, Cordes said: "Now we can do real astrophysical analysis on the burst source and the galaxy that harbors it."

Fast radio bursts, or FRBs, were first seen about 10 years ago. In November 2012, Cornell astronomers using the Arecibo Observatory captured its first FRB - which lasted three one-thousandths of a second. Laura Spitler, discovered it as a postdoctoral researcher sifting through radio telescope data. It was called FRB 121102. Until then, only the Parkes Radio Telescope in New South Wales, Australia, had discovered a handful of previously known FRBs.

Rising just ahead of the winter constellation Orion, FRB 121102 - the one discovered at Arecibo - has a home in the pentagon-shaped constellation Auriga. "There's a patch of the sky from which we're getting this signal - and the patch of the sky is arc minutes in diameter. In that patch are hundreds of sources. Lots of stars, lots of galaxies, lots of stuff," said Chatterjee.

To locate the source of this sporadic flash, astronomers blended detective work with modern telescope technology, while combing through terabytes of data.

The Arecibo radio telescope has a resolution of three arc minutes or about one-tenth of the moon's diameter, but that is not precise enough to identify uniquely the source. Needing higher resolution to find it, the astronomers sought the help of the National Radio Astronomy Observatory's Karl G. Jansky Very Large Array, near Socorro, New Mexico, which provided more than 80 hours of observation time. The radio telescope array - a collection of dishes aimed at the cosmos - allows for better than one arc-second resolution.

After 50 fruitless hours of staring, the scientists hit the jackpot. "We caught the fast radio burst in the act," said Chatterjee.

The astronomers used a full range of telescopes to observe that sliver of sky, including NASA's Chandra X-ray satellite, Chile's Atacama Large Millimeter/submillimeter Array, and the Gemini optical telescope in Mauna Kea, Hawaii.

"With the Gemini telescope, this optical blob looks like a faint, faint, faint galaxy - and this faint, fuzzy blob corresponds with, smack onto, the radio source," Chatterjee said.

Other telescopes around the world helped to plot the light spectrum. "It's got a detectable signal of very particular colors of hydrogen, oxygen and other elements - but Doppler-shifted," said Chatterjee, explaining that the shifting wavelengths denote cosmic expansion and provide clues for the source distance.

The next big question is the nature of the source: What powers these bursts and are there other ones that repeat? "We think it may be a magnetar - a newborn neutron star with a huge magnetic field, inside a supernova remnant or a pulsar wind nebula - somehow producing these prodigious pulses," said Chatterjee.

"Or, it may be an active galactic nucleus of a dwarf galaxy. That would be novel. Or, it may be a combination of those two ideas - explaining why what we're seeing may be somewhat rare."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cornell University
Stellar Chemistry, The Universe And All Within It






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Hubble gazes at a cosmic megamaser
Greenbelt MD (SPX) Jan 01, 2017
This galaxy has a far more exciting and futuristic classification than most - it hosts a megamaser. Megamasers are intensely bright, around 100 million times brighter than the masers found in galaxies like the Milky Way. The entire galaxy essentially acts as an astronomical laser that beams out microwave emission rather than visible light (hence the 'm' replacing the 'l'). A megamaser is a ... read more


STELLAR CHEMISTRY
Russian static discharge measure unit to prolong satellite equipment lifespan

'Just the first stage': unique 3D-printed Siberian satellite to orbit Earth

How to 3-D print your own sonic tractor beam

Saab, UAE sign radar support deal

STELLAR CHEMISTRY
U.S. Navy selects Raytheon for tactical radio production

Underwater radio, anyone?

Japan to Launch First Military Communications Satellite on January 24

Intelsat General to provide satellite services to RiteNet for US Army network

STELLAR CHEMISTRY
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

STELLAR CHEMISTRY
China to offer global satellite navigation service by 2020

Austrian cows swap bells from 'hell' for GPS

Russia, China Making Progress in Synchronization of GLONASS, BeiDou Systems

Alpha Defence Company To Make Navigation Satellites For ISRO

STELLAR CHEMISTRY
Sikorsky funded for Phase III of DARPA's ALIAS program

Israeli air force reties F-16A/B 'Netz' aircraft from service

U.S. Air Force releases JSTARS recapitalization RFP

Realistic training for extreme flight conditions

STELLAR CHEMISTRY
ONR global seeks more powerful electronic devices

Electron-photon small-talk could have big impact on quantum computing

An invisible electrode

World's smallest radio receiver has building blocks the size of 2 atoms

STELLAR CHEMISTRY
China launches TanSat to study atmospheric carbon dioxide processes

There's a jet stream in our core

Switzerland sees driest December in 150 years

Lockheed Martin Completes Assembly of NOAA's GOES-S Weather Satellite

STELLAR CHEMISTRY
Madrid lifts partial car ban as pollution eases

Obama criticized after monument designation

Beijing starts 2017 under a cloud

In Spain first, Madrid bans half of cars to fight smog









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.