Space Industry and Business News  
CARBON WORLDS
Converting CO2 into usable energy
by Staff Writers
Upton NY (SPX) Mar 06, 2018

Brookhaven scientists are pictured at NSLS-II beamline 8-ID, where they used ultra-bright x-ray light to 'see' the chemical complexity of a new catalytic material. Pictured from left to right are Klaus Attenkofer, Dong Su, Sooyeon Hwang, and Eli Stavitski. Image courtesy Brookhaven National Laboratory.

Imagine if carbon dioxide (CO2) could easily be converted into usable energy. Every time you breathe or drive a motor vehicle, you would produce a key ingredient for generating fuels. Like photosynthesis in plants, we could turn CO2 into molecules that are essential for day-to-day life. Now, scientists are one step closer.

Researchers at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory are part of a scientific collaboration that has identified a new electrocatalyst that efficiently converts CO2 to carbon monoxide (CO), a highly energetic molecule. Their findings were published on Feb. 1 in Energy and Environmental Science.

"There are many ways to use CO," said Eli Stavitski, a scientist at Brookhaven and an author on the paper. "You can react it with water to produce energy-rich hydrogen gas, or with hydrogen to produce useful chemicals, such as hydrocarbons or alcohols. If there were a sustainable, cost-efficient route to transform CO2 to CO, it would benefit society greatly."

Scientists have long sought a way to convert CO2 to CO, but traditional electrocatalysts cannot effectively initiate the reaction. That's because a competing reaction, called the hydrogen evolution reaction (HER) or "water splitting," takes precedence over the CO2 conversion reaction.

A few noble metals, such as gold and platinum, can avoid HER and convert CO2 to CO; however, these metals are relatively rare and too expensive to serve as cost-efficient catalysts. So, to convert CO2 to CO in a cost-effective way, scientists used an entirely new form of catalyst. Instead of noble metal nanoparticles, they used single atoms of nickel.

"Nickel metal, in bulk, has rarely been selected as a promising candidate for converting CO2 to CO," said Haotian Wang, a Rowland Fellow at Harvard University and the corresponding author on the paper.

"One reason is that it performs HER very well, and brings down the CO2 reduction selectivity dramatically. Another reason is because its surface can be easily poisoned by CO molecules if any are produced."

Single atoms of nickel, however, produce a different result.

"Single atoms prefer to produce CO, rather than performing the competing HER, because the surface of a bulk metal is very different from individual atoms," Stavitski said.

Klaus Attenkofer, also a Brookhaven scientist and a co-author on the paper, added, "The surface of a metal has one energy potential - it is uniform. Whereas on a single atom, every place on the surface has a different kind of energy."

In addition to the unique energetic properties of single atoms, the CO2 conversation reaction was facilitated by the interaction of the nickel atoms with a surrounding sheet of graphene. Anchoring the atoms to graphene enabled the scientists to tune the catalyst and suppress HER.

To get a closer look at the individual nickel atoms within the atomically thin graphene sheet, the scientists used scanning transmission electron microscopy (STEM) at Brookhaven's Center for Functional Nanomaterials (CFN), a DOE Office of Science User Facility. By scanning an electron probe over the sample, the scientists were able to visualize discrete nickel atoms on the graphene.

"Our state-of-art transmission electron microscope is a unique tool to see extremely tiny features, such as single atoms," said Sooyeon Hwang, a scientist at CFN and a co-author on the paper.

"Single atoms are usually unstable and tend to aggregate on the support," added Dong Su, also a CFN scientist and a co-author on the paper. "However, we found the individual nickel atoms were distributed uniformly, which accounted for the excellent performance of the conversion reaction."

To analyze the chemical complexity of the material, the scientists used beamline 8-ID at the National Synchrotron Light Source II (NSLS-II) - also a DOE Office of Science User Facility at Brookhaven Lab. The ultra-bright x-ray light at NSLS-II enabled the scientists to "see" a detailed view of the material's inner structure.

"Photons, or particles of light, interact with the electrons in the nickel atoms to do two things," Stavitski said.

"They send the electrons to higher energy states and, by mapping those energy states, we can understand the electronic configuration and the chemical state of the material. As we increase the energy of the photons, they kick the electrons off the atoms and interact with the neighboring elements." In essence, this provided the scientists with an image of the nickel atoms' local structure.

Based on the results from the studies at Harvard, NSLS-II, CFN, and additional institutions, the scientists discovered single nickel atoms catalyzed the CO2 conversion reaction with a maximal of 97 percent efficiency. The scientists say this is a major step toward recycling CO2 for usable energy and chemicals.

"To apply this technology to real applications in the future, we are currently aimed at producing this single atom catalyst in a cheap and large-scale way, while improving its performance and maintaining its efficiency," said Wang.

Research paper


Related Links
Brookhaven National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CARBON WORLDS
Durable wood carbon sponge could enable wearable sensors, pollutant treatment
College Park MD (SPX) Mar 06, 2018
Engineers at the University of Maryland, College Park (UMD) have for the first time demonstrated that wood can be directly converted into a carbon sponge capable of enduring repeated compression and other extreme mechanical conditions. The UMD engineers' wood carbon sponge overcomes several limiting factors of other lightweight, compressible carbon sponges because it is simpler, less expensive, and more sustainable to produce. The new sponge can be used in various applications such as energy stora ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Latest Updates from NASA on IMAGE Recovery

Navy turns to Raytheon for radar upgrades

Virtual predator is self-aware, behaves like living counterpart

Common bricks can be used to detect past presence of uranium, plutonium

CARBON WORLDS
Airbus to provide near real-time access to its satellite data

Increasing Situational Awareness with Fortion TacticalC2

British astronaut hails 'groundbreaking' Airbus satellite

Northrop Grumman gets production, support contracts for E-2D Hawkeye

CARBON WORLDS
CARBON WORLDS
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

CARBON WORLDS
F-35Bs get first operational deployment with Marine Expeditionary Unit

MH370 hunt likely to end mid-June: official

Air Force awards contract for jet fighter training programs

Lockheed awarded $155M on two contracts for F-35 work

CARBON WORLDS
Concern over China influence shadows chip sector deal

Individual quantum dots imaged in 3-D for first time

Going with the DNA flow: Molecule of life finds new uses in microelectronics

Practical spin wave transistor one step closer

CARBON WORLDS
Where fresh is cool in Bay of Bengal

Study discovers South African wildfires create climate cooling

NASA space laser completes 2,000-mile road trip

New data helps explain recent fluctuations in Earth's magnetic field

CARBON WORLDS
Krill could prove secret weapon in ocean plastics battle

Indonesia scrubbing the 'world's dirtiest river'

Vietnam suspends steel firms after pollution protests

Gabon accuses France's Veolia of pollution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.