Space Industry and Business News  
ENERGY TECH
Controlling electron spin for efficient water splitting
by Staff Writers
Rehovot, Israel (SPX) Apr 12, 2017


Supramolecular structures select spins only if they are chiral. Image courtesy Weizmann Institute of Science.

Water is made of oxygen and hydrogen, and splitting water molecules to produce hydrogen for fuel is a promising path for alternative energy. One of the main obstacles to making hydrogen production a reality is that current methods of water splitting result in hydrogen peroxide also being formed: This affects both the efficiency of the reaction and the stability of the production process.

Israeli and Dutch researchers from the Weizmann Institute of Science and Eindhoven University of Technology have succeeded in almost fully suppressing the production of hydrogen peroxide by controlling the spin of electrons in the reaction.

The group published these findings this week in the Journal of the American Chemical Society. The efficient production of hydrogen paves the way toward the use of solar energy to split water.

The goal is to produce hydrogen with photoelectrochemical (solar) cells, using light to split water. Unfortunately, the breaking apart of water molecules has been, up to now, relatively inefficient, and the hydrogen peroxide formed as a by-product corrodes some of the electrodes, thus further reducing the efficiency of the process.

Electron spin
The researchers, led by professors Ron Naaman of the Weizmann Institute of Science and Bert Meijer of Eindhoven University of Technology, are the first to have specifically investigated the role of the spin - the internal magnetic moment - of electrons involved in these basic, oxygen-based chemical reactions.

They hypothesized that if both spins could be aligned, the formation of hydrogen peroxide would not occur, because the ground state of hydrogen peroxide needs two electrons with opposite spins. Oxygen, in contrast, is produced when the electrons have parallel spins.

Expectations exceeded
The secret to success was paint: The researchers covered one of the photoelectrochemical cell electrodes - the titanium-oxide anode - with organic paint containing chiral (molecules that are mirror images of each other), supramolecular structures of organic paint.

These unique structures enabled the scientists to inject only electrons with their spins aligned in a certain direction into the chemical reaction. This work was based on previous findings from Naaman's lab group, demonstrating that the transmission of electrons through chiral molecules is selective, depending on the electrons' spins.

"The effect on water splitting exceeded our expectations," says Naaman. "The formation of hydrogen peroxide was almost entirely suppressed. We also saw a significant increase in the cell's current. And because chiral molecules are very common in nature, we expect this finding may have significance in many areas of research."

The researchers are not yet able to say exactly how well this finding can improve the efficiency of hydrogen production. "Our goal was to be able to control the reaction and to understand what exactly was going on," explains Meijer.

"In some ways, this was a stroke of luck because the supramolecular structures had not originally been intended for this purpose. It goes to show how important supramolecular chemistry is as a fundamental field of research, and we're very busy optimizing the process."

ENERGY TECH
Physicists develop ultrathin superconducting film
Saarbrucken, Germany (SPX) Apr 10, 2017
Experimental physicists in the research group led by Professor Uwe Hartmann at Saarland University have developed a thin nanomaterial with superconducting properties. Below about -200 C these materials conduct electricity without loss, levitate magnets and can screen magnetic fields. The particularly interesting aspect of this work is that the research team has succeeded in creating super ... read more

Related Links
Weizmann Institute of Science
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Humans to Mars Official NASA Goal, But What About Radiation

Recent advances and new insights into quantum image processing

NASA Fellow studies new heatshield-making technique

Despite EU fines, Greece struggling to promote recycling

ENERGY TECH
Thales supplying Denmark with communications system

US Strategic Command, Norway sign agreement to share space services, data

Pentagon urges Russia not to hang up military hotline

AF announces major changes to space enterprise

ENERGY TECH
ENERGY TECH
Galileo's search and rescue service in the spotlight

Russia inaugurates GPS-type satellite station in Nicaragua

Northrop Grumman, Honeywell receive EGI-M contracts

China's BeiDou system to expand cooperation to SE Asia

ENERGY TECH
Aviation poised for 'third revolution': Airbus boss

U.S. F-35s to make first operational deployment in Europe

Airbus talks with military plane clients 'constructive': Enders

Lockheed Martin gets $372 million contract mod for F-35 work

ENERGY TECH
Touch-sensitive, elastic fibers offer new interface for electronics

Microprocessors based on a layer of just 3 atoms

Streamlining mass production of printable electronics

Irish researchers make major breakthrough in smart printed electronics

ENERGY TECH
New map reveals Earth's magnetic field in high resolution

Solar Storms Can Drain Electrical Charge Above Earth

Climate change to increase severe aircraft turbulence

NASA's High-Altitude Plane Takes to the Sky for GOES-16 Field Campaign

ENERGY TECH
Polluted London sets its sights on cars

Road salt runoff threatens US, Canada lakes: study

Shanghai river clean-up leaves boat-dwellers in limbo

Bangladesh closes one of world's most polluted places









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.