Space Industry and Business News  
STELLAR CHEMISTRY
Controlling brain states with a ray of light
by Staff Writers
Barcelona, Spain (SPX) Jun 18, 2021

illustration only

The brain presents different states depending on the communication between billions of neurons, and this network is the basis of all our perceptions, memories, and behaviours. It is often considered a "black box", with difficult access for clinicians and researchers, as few limited tools are available to perform accurate and spaciotemporal studies on brain neuronal behaviour. Now, researchers from the Institute for Bioengineering of Catalonia (IBEC) in collaboration with August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and have added some light to the subject: they succeeded for the first time in controlling neuronal activity in the brain using a molecule responsive to light.

The study included participants from the Autonomous University of Barcelona (UAB) and was carried out in the frame of the Human Brain Project of the EU. It describes the first way to directly photomodulate brain state transitions in vivo.

The work, led by ICREA Research Professors Pau Gorostiza (IBEC-CERCA, BIST, CIBER-BBN) and Mavi Sanchez-Vives (IDIBAPS) and has been recently published in the journal Advanced Science. Results show that this new molecule, named PAI (for Phthalimide-Azo-Iper) can specifically and locally control the muscarinic cholinergic receptors, that is, the acetylcholine receptors, a brain neurotransmitter very important in several processes as learning attention or memory.

Control of brain states transitions with light
Transitions between brain states, such as going from being asleep to awake, or waking up from a coma, are based on the transmission of chemical and electrical signals among groups of neurons involved in different functions. Current techniques to modulate neuronal activity as transcranial-magnetic or ultrasound stimulation have limitations in spatiotemporal and spectral performance. Another technique with high precision that also uses light to control the neurons in the optogenetics, but it depends on genetic manipulation, making difficult its translation to humans due to safety reasons.

Here, researchers applied photopharmacology to tackle these problems. To do so they used a molecule previously developed at IBEC, PAI, that is light responsive and allows a spatiotemporally controlled modulation of brain neurons, binding and controlling the activity of muscarinic cholinergic receptors, key receptors on neuronal interaction and communication. By using this approach, the cholinergic-innervation dependent brain state transitions can be controlled by light using drugs chemically designed to be photosensitive.

"The control of neuronal activity in the brain is key to perform both basic and applied research, and to develop safe and accurate techniques to perform therapeutic brain interventions in clinical neurology" , explains Fabio Riefolo (IBEC), co-first author of the study.

Changes in brain states
Different brain states and transitions among them are associated with brain function. They are closely linked to changes in brain activation patterns, which in turn reflect the activity and parameters of specific neuronal networks. Thus, manipulation of neurons with a spatiotemporal control is fundamental to determine the relation among brain states and behaviour and to study the influence of neuronal circuits on specific behaviours. In addition, PAI is pharmacologically specific for a muscarinic receptor subtype, M2, which offers exciting prospects to study the pharmacology of brain waves.

When applying PAI to the intact brain, and subsequently white light, researchers could modulate the spontaneous emerging slow oscillations in neuronal circuits and reversibly manipulate the brain oscillatory frequency. This new chemically-engineered tool allowed to induce and investigate in detail, in a controlled and non-invasive way, the transitions of brain from sleep- to awake-like states using direct illumination.

In our brain, neuronal activity is driven by molecules known as neuromodulators, for example acetylcholine (ACh), through their binding to cholinergic receptors. However, it is not completely understood the contribution of the different cells expressing ACh receptors in the global brain behaviour. The use of selective and photoswitchable cholinergic drugs as PAI to achieve a spatiotemporal precise modulation of brain activity opens the way to perform accurate basic neuroscience research and to develop future brain therapies and stimulation.

"The photocontrol of endogenous receptors and their functions in the central nervous system, such as the transition between different brain states, is an achievement for neuromodulation technologies", explains Dr. Almudena Barbero-Castillo (IDIBAPS), co-first author of the study.

Research paper


Related Links
Institute For Bioengineering Of Catalonia
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
New light on making two-dimensional polymers
Munich, Germany (SPX) Jun 11, 2021
An international research team led by members from the Technical University of Munich, the Deutsches Museum, Munich, and the Swedish Linkoping University has developed a method to manufacture two-dimensional polymers with the thickness of a single molecule. The polymers are formed on a surface by the action of light. The discovery paves the way to new ultrathin and functional materials. The quest for new two-dimensional materials has rapidly intensified after the discovery of graphene - a supermat ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Compact quantum computer for server centers

PROTEUS transitions to Marine Corps Warfighting Lab

Ultralight material withstands supersonic microparticle impacts

US Navy tests warship's metal with megablast

STELLAR CHEMISTRY
Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

Isotropic Systems and SES GS complete trials for of new connectivity for US Military

Quantum communication in space moves ahead

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Lockheed Martin-Built Next Generation GPS III Satellite Propels Itself to Orbit

GMV at the core of the Galileo High Accuracy Service

Galileo satellites' last step before launch

UK space sector targets positioning navigation and timing sub systems

STELLAR CHEMISTRY
Flying in formation to reduce climate impact

Current air transport climate targets insufficient for trend reversal

Florida-based space balloon company launches ticket sales

US Air Force selects Electra for ultra-short takeoff aircraft development

STELLAR CHEMISTRY
Clearing the way toward robust quantum computing

Physicists uncover secrets of world's thinnest superconductor

Germany eyes technological leap with first quantum computer

Researchers tame silicon to interact with light for next-generation microelectronics

STELLAR CHEMISTRY
Orbital Sidekick announces upcoming launch of its most powerful satellite: Aurora

Ozone pollution in Antarctica has risen steadily over last 25 years

Edgybees Selected to Participate in Inaugural AWS Space Accelerator for Startups

Earth from Space: Chongqing, China

STELLAR CHEMISTRY
Wildlife deaths blamed on ship disaster mount in Sri Lanka

Diving into the global problem of technology waste

Sri Lanka arrests captain over ship fire pollution

Ocean microplastics: First global view shows seasonal changes and sources









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.