Space Industry and Business News  
ENERGY TECH
Computers uncover mechanism that stabilizes plasma within tokamaks
by Staff Writers
Plainsboro NJ (SPX) Nov 20, 2015


A cross-section of the virtual plasma showing where the magnetic field lines intersect the plane. The central section has field lines that rotate exactly once. Image courtesy Stephen Jardin, PPPL. For a larger version of this image please go here.

A team of physicists led by Stephen Jardin of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) has discovered a mechanism that prevents the electrical current flowing through fusion plasma from repeatedly peaking and crashing. This behavior is known as a "sawtooth cycle" and can cause instabilities within the plasma's core. The

The team, which included scientists from General Atomics and the Max Planck Institute for Plasma Physics, performed calculations on the Edison computer at the National Energy Research Scientific Computing Center, a division of the Lawrence Berkeley National Laboratory.

Using M3D-C1, a program they developed that creates three-dimensional simulations of fusion plasmas, the team found that under certain conditions a helix-shaped whirlpool of plasma forms around the center of the tokamak.

The swirling plasma acts like a dynamo - a moving fluid that creates electric and magnetic fields. Together these fields prevent the current flowing through plasma from peaking and crashing.

The researchers found two specific conditions under which the plasma behaves like a dynamo. First, the magnetic lines that circle the plasma must rotate exactly once, both the long way and the short way around the doughnut-shaped configuration, so an electron or ion following a magnetic field line would end up exactly where it began.

Second, the pressure in the center of the plasma must be significantly greater than at the edge, creating a gradient between the two sections. This gradient combines with the rotating magnetic field lines to create spinning rolls of plasma that swirl around the tokamak and gives rise to the dynamo that maintains equilibrium and produces stability.

This dynamo behavior arises only under certain conditions. Both the electrical current running through the plasma and the pressure that the plasma's electrons and ions exert on their neighbors must be in a range that is "not too large and not too small," said Jardin. In addition, the speed at which the conditions for the fusion reaction are established must be "not too fast and not too slow."

Jardin stressed that once a range of conditions like pressure and current are set, the dynamo phenomenon occurs all by itself. "We don't have to do anything else from the outside," he noted.

"It's something like when you drain your bathtub and a whirlpool forms over the drain by itself. But because a plasma is more complicated than water, the whirlpool that forms in the tokamak needs to also generate the voltage to sustain itself."

During the simulations the scientists were able to virtually add new diagnostics, or probes, to the computer code. "These diagnostics were able to measure the helical velocity fields, electric potential, and magnetic fields to clarify how the dynamo forms and persists," said Jardin. The persistence produces the "voltage in the center of the discharge that keeps the plasma current from peaking."

Physicists have indirectly observed what they believe to be the dynamo behavior on the DIII-D National Fusion Facility that General Atomics operates for the Department of Energy in San Diego and on the ASDEX Upgrade in Garching, Germany.

They hope to learn to create these conditions on demand, especially in ITER, the huge multinational fusion machine being constructed in France to demonstrate the practicality of fusion power.

"Now that we understand it better, we think that computer simulations will show us under what conditions this will occur in ITER," said Jardin. "That will be the focus of our research in the near future."

Learning how to create these conditions will be particularly important for ITER, which will produce helium nuclei that could amplify the sawtooth disruptions. If large enough, these disruptions could cause other instabilities that could halt the fusion process. Preventing the cycle from starting would therefore be highly beneficial for the ITER experiment.

results have been published online in Physical Review Letters. The research was supported by the DOE Office of Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Princeton Plasma Physics Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
New Super H-mode regime could greatly increase fusion power
Washington DC (SPX) Nov 13, 2015
Meet "Super H mode," a newly discovered state of tokamak plasma that could sharply boost the performance of future fusion reactors. This new state raises the pressure at the edge of the plasma beyond what previously had been thought possible, creating the potential to increase the power production of the superhot core of the plasma. Discovery of this mode has led to a new line of research ... read more


ENERGY TECH
UW team refrigerates liquids with a laser for the first time

Network analysis shows systemic risk in mineral markets

Power up: Cockroaches employ a 'force boost' to chew through tough materials

Queen's University Belfast, Northern Ireland, invents first 'porous liquid'

ENERGY TECH
Australia contracts for defense computer network upgrades

Harris Corporation Wins $40 Million Air Force Satellite Control Network Contract Extension

Commercialization is coming to WGS

DARPA's RadioMap Program Enters Third Phase

ENERGY TECH
United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

Recycled power plant equipment bolsters ULA in its energy efficiency

Purchase of building at Ellington a key step in Houston Spaceport development plans

ENERGY TECH
Raytheon completes GPS III launch readiness exercise

LockMart advances threat protection on USAF GPS Control Segment

Orbital ATK products enable improved global positioning on Earth

Galileo pair preparing for December launch

ENERGY TECH
Russian company to help Iran with helicopter repair facility

U.S. Air Force deploys upgraded E-3 Sentry to combat theater

Russia, China agree $2 bln deal for 24 Su-35 warplanes: state firm

Crack discovered on F-35 test plane

ENERGY TECH
New class of materials for organic electronics

A new slant on semiconductor characterization

Miniaturizable magnetic resonance

Scientists design a full-scale architecture for a quantum computer in silicon

ENERGY TECH
RapidScat Celebrates One-Year Anniversary

Excitement Grows as NASA Carbon Sleuth Begins Year Two

NASA to fly, sail north to study plankton-climate change connection

Curtiss-Wright and Harris bring digital map solutions to rugged systems

ENERGY TECH
Greenpeace India's shutdown halted temporarily, group says

Mine spill Brazil's worst environmental catastrophe: minister

Commercial sea salt samples purchased in China contaminated with microplastics

Pharmaceuticals and other contaminants of emerging concern









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.