Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Compact atomic clock design uses cold atoms to boost precision
by Staff Writers
Washington DC (SPX) Nov 07, 2013


This is NIST physicist Elizabeth Donley with a compact atomic clock design that could help improve precision in ultraportable clocks. About 1 million cold rubidium atoms are held in a vacuum chamber in the lower left of the photo. On the screen is a close-up of the atom trapping region of the apparatus. Credit: vonDauster/NIST.

Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a compact atomic clock design that relies on cold rubidium atoms instead of the usual hot atoms, a switch that promises improved precision and stability.

Described in a new paper,* the heart of the prototype clock (the vacuum chamber containing the atoms) is about the size of a coffee mug, 150 cubic centimeters, set in a small table of lasers and electronics.

This is about 10 times larger than NIST's chip-scale atomic clock packages-for now. But when miniaturized and improved, NIST's new clock design has the potential to be about the same size and 1,000 times more precise and stable than chip-scale atomic clocks over crucial timespans of a day or more.

By achieving this goal, the cold-atom clock could also match the performance of commercial cesium-beam atomic clocks, common laboratory instruments, but in a smaller package.

"We're trying to push ultraportable clocks to higher performance levels," NIST physicist Elizabeth Donley says. "The aim is to make a clock that does not even need calibration."

NIST pioneered the development of chip-sized atomic clocks in 2004.** Atomic clocks of similar design using atoms in a hot gas were commercialized a few years ago. For the past eight years this NIST research group has concentrated on a spin-off technology, chip-scale atomic magnetometers, but recently refocused on miniature atomic clock designs.

Chip-scale atomic clocks keep time well enough for many applications requiring timing synchronization over short periods, such as GPS receivers. But clock precision tends to drift over time spans beyond a few hours because the atoms are dispersed in high-pressure gases, which alter the atoms' resonant frequency-the clock tick rate-depending on temperature.

The new cold-atom clock does not use these gases at all, thus eliminating this source of error. Improvements like this could extend the uses of small, low-power clocks to exacting applications such as synchronizing telecommunications networks.

NIST's cold-atom clock relies on about 1 million rubidium atoms held in a small glass vacuum chamber. The atoms are cooled with lasers and trapped with magnetic fields at very cold, microkelvin temperatures.

Two near-infrared lasers excite the atoms symmetrically from above and below. Each laser generates two frequencies of light, which are tuned until the atoms oscillate between two energy states and stop absorbing light. This sets the clock ticking rate at a specific microwave frequency.

By aiming at the atoms from opposite directions simultaneously, the laser arrangement cancels a major source of measurement error-the Doppler shift, or the change in the atoms' apparent resonant frequency as they interact and move with the laser light. The clock also has special quantum features unique to rubidium atoms that boost the signal contrast and make the detection of the clock ticks more precise.

NIST researchers are already working on the next version of the cold-atom clock. In addition to reducing its size, researchers expect to improve its performance by adding magnetic shielding and antireflection coating. The research is funded in part by the Defense Advanced Research Projects Agency.

*F.-X. Esnault, E. Blanshan, E.N. Ivanov, R.E. Scholten, J. Kitching and E.A. Donley. A cold-atom double-lambda CPT clock. Physical Review A 88, 042120. Published Oct. 31, 2013.

**See 2004 NIST news release, "NIST Unveils Chip-Scale Atomic Clock,". An early version of this clock recently went on display at the Smithsonian Institution "Time and Navigation" exhibit.

.


Related Links
National Institute of Standards and Technology (NIST)
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
NIST ytterbium atomic clocks set record for stability
Gaithersburg MD (SPX) Aug 26, 2013
A pair of experimental atomic clocks based on ytterbium atoms at the National Institute of Standards and Technology (NIST) has set a new record for stability. The clocks act like 21st-century pendulums or metronomes that could swing back and forth with perfect timing for a period comparable to the age of the universe. NIST physicists report in the Aug. 22 issue of Science Express that the ... read more


TIME AND SPACE
NASA Technologists Embrace Laser Instrument Challenge

High Energy Prairie View A and M Interns Collaborate with NASA Goddard on Radiation Effects Research

Less Toxic Metabolites, More Chemical Product

A noble yet simple way to synthesize new metal-free electrocatalysts for oxygen reduction reaction

TIME AND SPACE
Raytheon expands international footprint of electronic warfare capability

Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

Northrop Grumman Receives Contract to Retrofit Joint STARS Fleet

Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

TIME AND SPACE
Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

ILS Proton Launches Sirius FM-6 Satellite

TIME AND SPACE
How pigeons may smell their way home

UK conservationists using location-based system ManagePlaces

A Better Way to Track Your Every Move

China's satellite navigation system to start oversea operation next year

TIME AND SPACE
NASA Researchers to Flying Insects: 'Bug Off!'

First harbor trial completed for Australian helicopter docking vessel

Seoul eyes export market for its Surion light helicopter

Declassified: USAF tested secretly acquired Soviet fighters in Area 51

TIME AND SPACE
Synaptic transistor learns while it computes

Nanoscale engineering boosts performance of quantum dot light emitting diodes

JQI team 'gets the edge' on photon transport in silicon

Atomically Thin Device Promises New Class of Electronics

TIME AND SPACE
Global map provides new insights into land use

Sensor Payloads Lift Off With Availability of Complete Hyperspectral Airborne Solution

Seeing in the dark

Researchers Turn to Technology to Discover a Novel Way of Mapping Landscapes

TIME AND SPACE
200 million people at risk from toxic pollution: environmentalists

Girl, 8, is China's youngest lung cancer case

China climate negotiator laments 'severe' pollution

Gold mining ravages Peru




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement