Space Industry and Business News  
Compact Galaxies In Early Universe Pack A Big Punch

These images taken by NASA's Hubble Space Telescope show nine compact, ultradense galaxies as they appeared 11 billion years ago. The galaxies are only 5,000 light-years across and yet are 200 billion times more massive than the Sun. They are a fraction of the size of today's grownup galaxies but contain the same number of stars. Each galaxy could fit inside the central hub of our Milky Way Galaxy. Hubble's Near Infrared Camera and Multi-Object Spectrometer snapped these images between June 2006 and June 2007. Credit: NASA, ESA, P. van Dokkum (Yale University), M. Franx (Leiden University, The Netherlands), and G. Illingworth (University of California, Santa Cruz, and Lick Observatory)
by Staff Writers
Baltimore MD (SPX) Apr 30, 2008
Imagine receiving an announcement touting the birth of a baby 20 inches long and weighing 180 pounds. After reading this puzzling message, you would immediately think the baby's weight was a misprint. Astronomers looking at galaxies in the universe's distant past received a similar perplexing announcement when they found nine young, compact galaxies, each weighing in at 200 billion times the mass of the Sun.

The galaxies, each only 5,000 light-years across, are a fraction of the size of today's grownup galaxies but contain approximately the same number of stars. Each galaxy could fit inside the central hub of our Milky Way Galaxy.

Astronomers used NASA's Hubble Space Telescope and the W.M. Keck Observatory on Mauna Kea, Hawaii, to study the galaxies as they existed 11 billion years ago, when the universe was less than 3 billion years old.

"Seeing the compact sizes of these galaxies is a puzzle," said Pieter

G. van Dokkum of Yale University in New Haven, Conn., who led the study. "No massive galaxy at this distance has ever been observed to be so compact. It is not yet clear how they would build themselves up to become the large galaxies we see today. They would have to change a lot over 11 billion years, growing five times bigger. They could get larger by colliding with other galaxies, but such collisions may not be the complete answer."

To determine the sizes of the galaxies, the team used the Near Infrared Camera and Multi-Object Spectrometer on Hubble. The Keck observations were carried out with assistance of a powerful laser to correct for image blurring caused by the Earth's atmosphere. "Only Hubble and Keck can see the sizes of these galaxies because they are very small and far away," van Dokkum explained.

Van Dokkum and his colleagues studied the galaxies in 2006 with the Gemini South Telescope Near-Infrared Spectrograph, on Cerro Pachon in the Chilean Andes. Those observations provided the galaxies' distances and showed that the stars are a half a billion to a billion years old. The most massive stars had already exploded as supernovae.

"In the Hubble Deep Field, astronomers found that star-forming galaxies are small," said Marijn Franx of Leiden University, The Netherlands. "However, these galaxies were also very low in mass. They weigh much less than our Milky Way. Our study, which surveyed a much larger area than in the Hubble Deep Field, surprisingly shows that galaxies with the same weight as our Milky Way were also very small in the past. All galaxies look really different in early times, even massive ones that formed their stars early."

The ultradense galaxies might comprise half of all galaxies of that mass 11 billion years ago, van Dokkum said, forming the building blocks of today's largest galaxies.

How did these small, crowded galaxies form? One way, suggested van Dokkum, involves the interaction of dark matter and hydrogen gas in the nascent universe. Dark matter is an invisible form of matter that accounts for most of the universe's mass.

Shortly after the Big Bang, the universe contained an uneven landscape of dark matter. Hydrogen gas became trapped in puddles of the invisible material and began spinning rapidly in dark matter's gravitational whirlpool, forming stars at a furious rate.

Based on the galaxies' masses, which are derived from their color, the astronomers estimated that the stars are spinning around their galactic disks at roughly 890,000 to 1 million miles an hour (400 to 500 kilometers a second). Stars in today's galaxies, by contrast, are traveling at about half that speed because they are larger and rotate more slowly than the compact galaxies.

These galaxies are ideal targets for the Wide Field Camera 3, which is scheduled to be installed aboard Hubble during Servicing Mission 4 in the fall of

2008. "We hope to use the Wide Field Camera 3 to find thousands of these galaxies. The Hubble images, together with the laser adaptive optics at Keck and similar large telescopes, should lead to a better understanding of the evolution of galaxies early in the life of the universe," said Garth Illingworth of the University of California, Santa Cruz, and Lick Observatory.

The findings appeared in the April 10 issue of The Astrophysical Journal Letters.

The authors of the science paper are Pieter van Dokkum (Yale University), Marijn Franx (Leiden University, The Netherlands), Mariska Kriek (Princeton University), Bradford Holden, Garth Illingworth, Daniel Magee, and Rychard Bouwens (University of California, Santa Cruz, and Lick Observatory), Danilo Marchesini (Yale University), Ryan Quadri (Leiden University), Greg Rudnick (National Optical Astronomical Observatory, Tucson), Edward Taylor (Leiden University), and Sune Toft (European Southern Observatory, Germany).

related report
Ultra-Dense Galaxies Found In Early Universe
A team of astronomers looking at the universe's distant past found nine young, unusually compact galaxies, each weighing in at 200 billion times the mass of the Sun. The findings appeared in the April 10 issue of The Astrophysical Journal Letters.

These young galaxies are the equivalent of a human baby that is 20 inches long, yet weighs 180 pounds.

"Seeing the compact sizes of these galaxies is a puzzle," said Pieter

G. van Dokkum of Yale University who led the study. "No massive galaxy at this distance has ever been observed to be so compact, and it is not yet clear how one of these would build itself up to be the size of the galaxies we see today."

The galaxies, each only 5,000 light-years across, are a fraction of the size of today's "grownup" galaxies but contain approximately the same number of stars. Each could fit inside the central hub of the Milky Way. "These ultra-dense galaxies, forming the building blocks of today's largest galaxies, might comprise half of all galaxies of that mass at this early time," van Dokkum said.

But, van Dokkum noted that they would have to change a lot over 11 billion years - they would have to grow five times bigger, "While they could get larger by colliding with other galaxies, such collisions may not be the complete answer," he said.

Astronomers used NASA's Hubble Space Telescope and the W.M. Keck Observatory on Mauna Kea, Hawaii, to study the galaxies whose light has been traveling toward us for 11 billion years. "What we see now is the way these compact galaxies existed 11 billion years ago, when the universe was less than 3 billion years old," van Dokkum explained. "Only Hubble and Keck can see the sizes of these galaxies because they are very small and far away."

In 2006, the research team also studied the galaxies with the Gemini South Telescope Near-Infrared Spectrograph, on Cerro Pachon in the Chilean Andes. Those observations provided the galaxies' distances and showed that the stars are a half a billion to a billion years old, and that the most massive stars had already exploded as supernovae.

"In the Hubble Deep Field, astronomers found that star-forming galaxies are small," said Marijn Franx of Leiden University, The Netherlands. "However, these galaxies were also very low in mass. They weigh much less than our Milky Way. Our study, which surveyed a much larger area than in the Hubble Deep Field, surprisingly shows that galaxies with the same weight as our Milky Way were also very small in the past. All galaxies look really different in early times, even massive ones that formed their stars early."

Van Dokkum speculated on how these small, crowded galaxies formed. He said, one way could have involved an interaction in the emerging universe between hydrogen gas and dark matter - an invisible form of matter that accounts for most of the universe's mass. Shortly after the Big Bang, the universe contained an uneven landscape of dark matter. He said that hydrogen gas could have been trapped in puddles of the invisible material which began spinning rapidly in dark matter's gravitational whirlpool, forming stars at a furious rate.

The astronomers estimated that the stars in the compact galaxies are spinning around their galactic disks at roughly 1 million miles an hour (500 kilometers a second). Stars in today's galaxies, by contrast, are traveling at about half that speed because they are larger and rotate more slowly.

These galaxies are ideal targets for the Wide Field Camera 3, which is scheduled to be installed aboard Hubble during Servicing Mission 4 in the fall of 2008. The team says that the new images should lead to a better understanding of the evolution of galaxies early in the life of the universe.

Related Links
Space Telescope Science Institute
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Galaxies Gone Wild
Washington DC (SPX) Apr 25, 2008
Fifty nine new images of colliding galaxies make up the largest collection of Hubble images ever released together. As this astonishing Hubble atlas of interacting galaxies illustrates, galaxy collisions produce a remarkable variety of intricate structures.







  • Microsoft takeover deadline for Yahoo expires without comment
  • China world's largest Internet market
  • World's Fastest Satellite Internet Connection To User Terminal Via KIZUNA
  • Microsoft threatens proxy battle against Yahoo

  • Israeli communications satellite launched
  • Military And Civilian Telecom Satellites Are Readied For Third Ariane 5 Mission Of 2008
  • AMOS-3 Communications Satellite Launched
  • PSLV Launches Ten Satellites

  • Belgian airline says it will cut costs, emissions by slowing down
  • Airbus, Boeing sign accord to cut air traffic impact on environment
  • Oil spike, cost of planes led to Oasis collapse: founders
  • Airbus boss says aviation unfairly targeted over climate change

  • BAE To Develop Military Communications Network
  • 3rd SOPS Makes Historic WGS Transition
  • Lockheed Martin Opens Wireless Cyber Security Lab
  • Northrop Grumman Team Bids To Bring Order To Missile Defense

  • Boost For Green Plastics From Plants
  • Broken Heart Image The Last For NASA's Long-Lived Polar Mission
  • Expand Networks Improves Application Performance Over Satellite Communications
  • First Responders Educated On Importance Of Testing Satellite Phones

  • NASA names science directorate deputy
  • Northrop Grumman Names Terri Zinkiewicz VP Sector Controller For Its Space Technology Sector
  • Northrop Grumman Appoints Scott Winship To VP And Program Manager - Navy Unmanned Combat Air System
  • NASA Names John Shannon New Space Shuttle Manager

  • NASA's Polar satellite ends its mission
  • Successful Cooperation Extends Dragon Programme
  • NASA Web Tool Enhances Airborne Earth Science Mission
  • NASA Satellites Aid In Chesapeake Bay Recovery

  • First Interactive Location Aware Sports Application Is Launched At The 112th Boston Marathon
  • Backpacker Magazine Launches Fully Redesigned Website With GPS-Supported Content
  • GPS Devices And Systems Will Generate Revenues Of 240 Billion Dollars By 2013
  • Europe Moves Closer To GPS Independence With Latest Satellite Launch

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement