Space Industry and Business News  
WATER WORLD
Comet Provides New Clues to Origins of Earth's Oceans
by Staff Writers
Moffett Field CA (SPX) May 24, 2019

file illustration only

The mystery of why Earth has so much water, allowing our "blue marble" to support an astounding array of life, is clearer with new research into comets. Comets are like snowballs of rock, dust, ice, and other frozen chemicals that vaporize as they get closer to the Sun, producing the tails seen in images.

A new study reveals that the water in many comets may share a common origin with Earth's oceans, reinforcing the idea that comets played a key role in bringing water to our planet billions of years ago.

The Stratospheric Observatory for Infrared Astronomy, SOFIA, the world's largest airborne observatory, observed Comet Wirtanen as it made its closest approach to Earth in December 2018. Data collected from the high-flying observatory found that this comet contains "ocean-like" water.

Comparing this with information about other comets, scientists suggest in a new study that many more comets than previously thought could have delivered water to Earth. The findings were published in Astronomy and Astrophysics Letters.

"We have identified a vast reservoir of Earth-like water in the outer reaches of the solar system," said Darek Lis, a scientist at NASA's Jet Propulsion Laboratory, in Pasadena, California, and lead author of the study. "Water was crucial for the development of life as we know it. We not only want to understand how Earth's water was delivered, but also if this process could work in other planetary systems."

Dirty Snowballs
Planets form from debris orbiting in a disk shape around a star; small pieces of debris can stick together and grow larger over time. Leftover debris remains in regions of our own solar system like the Kuiper Belt, beyond Neptune, or the Oort Cloud, far past Pluto.

Comets come from these areas, but we can only see them when their orbits bring them closer to the Sun. The heat from the Sun causes some of the dirty snow to vaporize, creating the fuzzy halo or "coma" of water vapor, dust and ice grains seen in comet images.

Scientists predict that the water in Earth's oceans came from water-carrying bodies in the early solar system that collided with our planet, similar to today's ice-rich asteroids or comets. But scientists do not know where in the formative disk these objects originated.

Water Types
Water is also known by its chemical name H2O because it's made of two hydrogen atoms and one oxygen atom. But using special instruments, scientists can detect two types: regular water, H2O, and heavy water, HDO, which has an extra neutrally charged particle called a neutron inside one of the hydrogen atoms.

Scientists compare the amount of heavy to regular water in comets. If comets have the same ratio of these water types as Earth's oceans, it indicates that the water in both may share a common origin.

But measuring this ratio is difficult. Ground and space telescopes can study this level of detail in comets only when they pass near Earth, and missions to visit comets, like Rosetta, are rare. Scientists have only been able to study this ratio in about a dozen comets since the 1980s. Additionally, it is difficult to study a comet's water from the ground because water in Earth's atmosphere blocks its signatures.

New Observations
Observing at high altitudes above much of the Earth's atmospheric water allowed SOFIA to accurately measure the ratio of regular to heavy water in Comet Wirtanen. The data showed that Comet Wirtanen's water ratio is the same as the Earth's oceans.

When the team compared the new SOFIA data with previous studies of comets, they found a surprising commonality. The ratio of regular to heavy water was not linked to the origin of the comets - whether they were from the Oort Cloud or the Kuiper Belt. Instead, it was related to how much water was released from ice grains in the comet's coma compared to directly from the snowy surface. This could imply that all comets could have a heavy-to-regular water ratio similar to Earth's oceans, and that they could have delivered a large fraction of water to Earth.

"This is the first time we could relate the heavy-to-regular water ratio of all comets to a single factor," noted Dominique Bockelee-Morvan, scientist at the Paris Observatory and the French National Center for Scientific Research and second author of the paper. "We may need to rethink how we study comets because water released from the ice grains appears to be a better indicator of the overall water ratio than the water released from surface ice."

More studies are needed to see if these findings hold true for other comets. The next time a comet is forecast to fly close enough for this type of study will be in November 2021.

Research Report: "Terrestrial Deuterium-to-Hydrogen Ratio in Water in Hyperactive Comets"


Related Links
Stratospheric Observatory for Infrared Astronomy
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Seasonal Monsoon Rains Block Key Ocean Current
Pasadena CA (JPL) May 20, 2019
Our oceans and the complex "conveyer belt" system of currents that connects them play an important role in regulating global climate. The oceans store heat from the Sun, and ocean currents transport that heat from the tropics to the poles. They release the heat and moisture into the air, which moderates climate nearby. But what happens if part of that conveyer belt jams? It's not a theoretical question. Scientists have observed that a major ocean current called the Indonesia Throughflow, which pro ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Small but Mighty: Mini Version of Extreme Environments Chamber Extends Planetary Science

How usable is virtual reality?

Kilogram to be based on physical absolute instead of single, physical object

Mission-Saving NASA Instrument Secures New Flight Opportunity; Slated for Significant Upgrade

WATER WORLD
Next AEHF satellite shipped to Cape Canaveral for June launch

Airbus and Thales Alenia Space to build two SpainSAT NG satellites

Boeing awarded $605M for Air Force's 11th WGS comms satellite

SLAC develops novel compact antenna for communicating where radios fail

WATER WORLD
WATER WORLD
China launches new BeiDou navigation satellite

Tug-of-war drives magnetic north sprint

DLR tests the City-ATM system at the Kohlbrand Bridge in Hamburg

GSA launches testing campaign for agriculture receivers

WATER WORLD
Bell Boeing awarded $42.2M for engineering, technical support for V-22

Lockheed nabs $11.9M for modification kits, special tooling for F-35s

SAS and Airbus to research electric aircraft infrastructure

China's big three airlines seek 737 MAX payouts from Boeing: reports

WATER WORLD
Mobile chip titan Qualcomm faces setback with US antitrust ruling

A step towards probabilistic computing

Computing faster with quasi-particles

Substrate defects key to growth of 2D materials

WATER WORLD
Airbus signs MOU with Hellenic Space Agency for future space cooperation

Arianespace to orbit Spanish SEOSat Ingenio Earth observation satellite

New research finds unprecedented weakening of Asian summer monsoon

3D Earth in the making

WATER WORLD
Residents split on future of Romania's trash heap 'time-bomb'

Life goes on under cloud of smog in Mexico City

Remote island beach plastics point to greater waste problem

Mexico City declares pollution alert, postpones football semi-final









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.