Space Industry and Business News  
EARTH OBSERVATION
Combining satellites, radar provides path for better forecasts
by Staff Writers
University Park PA (SPX) Nov 12, 2019

The all-sky method, developed by Penn State's Center for Advanced Data Assimilation and Predictability Techniques, can assimilate data from all weather conditions, including cloudy and rainy skies. Forecasting previously relied on clear-sky observations, due to challenges in diagnosing the complex physical processes within clouds, the scientists said.

Every minute counts when it comes to predicting severe weather. Combing data from cutting-edge geostationary satellites and traditional weather radar created a path toward earlier, more accurate warnings, according to Penn State researchers who studied supercell thuderstorms in the Midwest.

"We know satellites have an advantage in producing forecasts earlier, and radar has more confidence in where clouds should be and where thunderstorms will be moving," said Yunji Zhang, assistant research professor in meteorology and atmospheric sciences at Penn State. "The question was whether these two types of observations would complement each other if combined together. We found, for at least one severe weather event, assimilating satellite and radar simultaneously leads to the best forecasts."

Data assimilation is a statistical method used to paint the most accurate possible picture of current weather conditions, important because even small changes in the atmosphere can lead to large discrepancies in forecasts over time.

The scientists assimilated satellite and radar data separately and simultaneously to see which combination could best recreate conditions during a large storm system that struck Wyoming and Nebraska in 2017. The best results came from combining infrared brightness temperature observations from satellites, and radial wind velocity observations from radar, the scientists reported in the American Meteorological Society journal Monthly Weather Review.

"Our results suggest that each sensor provides unique information about the storm," said David Stensrud, head of the Department of Meteorology and Atmospheric Science at Penn State. "While these results need to be evaluated across a large spectrum of cases, they point to a path forward that could extend lead times for severe weather events, thereby providing improved information to the public when severe weather strikes."

The researchers were previously the first to use data from the new U.S. Geostationary Operational Environmental Satellite, GOES-16, to predict severe thunderstorms through the all-sky radiance method.

The all-sky method, developed by Penn State's Center for Advanced Data Assimilation and Predictability Techniques, can assimilate data from all weather conditions, including cloudy and rainy skies. Forecasting previously relied on clear-sky observations, due to challenges in diagnosing the complex physical processes within clouds, the scientists said.

Instruments on GOES-16 can see storm clouds as they form, tens of minutes earlier than traditional Doppler radar, which senses storms only after rain begins to fall, the scientists said. Satellites can also detect important surrounding environmental conditions, like how much water vapor is in the air.

But satellites also have limitations. Those same infrared sensors can only scan the tops of clouds and may miss details about what is happening underneath. Doppler radar observations provide 3D scans of the storms, leading to more accurate information about the storm's structure and potentially cutting down on false alarms, according to the researchers.

The scientists found they could increase warning times by up to 40 minutes, which supports the findings of their previous work. According to the researchers, current warning times for tornadoes average about 14 minutes.

"Say you have severe weather heading toward a football game or a large event," Zhang said. "If you can have a longer forecast lead time of 20 to 40 minutes, you have more time to evacuate. I believe that more human lives can be saved by increasing forecast times."

Research paper


Related Links
Penn State
Earth Observation News - Suppiliers, Technology and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EARTH OBSERVATION
Sudden warming over Antarctica to prolong Australia drought
Sydney (AFP) Sept 13, 2019
A rare phenomenon causing "the strongest Antarctic warming on record" is set to deliver more pain to dought-stricken Australia, scientists said Friday. The unusual event, known as "sudden stratospheric warming", started in the last week of August when the atmosphere above Antarctica began heating rapidly, scientists at Australia's Bureau of Meteorology said in a report. "The Bureau of Meteorology is predicting the strongest Antarctic warming on record, likely to exceed the previous record of Sep ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
A cross-center collaboration leads to an aerogel based aircraft antenna

Resolve Optics contributes to space projects

Florida aerospace forum showcases expanding space-related technology

New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

EARTH OBSERVATION
GatorWings wins DARPA Spectrum Collaboration Challenge

EPS completes multiservice operational test, declared fully operational

China launches new communication technology experiment satellite

2nd Space Operations Squadron decommissions 22-year-old satellite

EARTH OBSERVATION
EARTH OBSERVATION
Russia to launch glass sphere into space before new year to obtain accurate Earth data

Lockheed Martin GPS Spatial Temporal Anti-Jam Receiver System to be integrated in F-35 modernization

GPS III Ground System Operations Contingency Program Nearing Operational Acceptance

UK should ditch plans for GPS to tival Galileo

EARTH OBSERVATION
Aptiv awarded $28M contract for F-15 electrical cable assemblies

Lockheed nets $184.5M for organic depot level repairs on F-35s

State Dept. approves sale of UH-60M Black Hawk helicopters to Croatia

Report: Turkey nearing purchase of Russian Su-35 fighter planes

EARTH OBSERVATION
Antimony holds promise for post-silicon electronics

High performance electrical circuits made with 3D-printed plastics

A distinct spin on atomic transport

Xerox eyes deal for PC maker HP: reports

EARTH OBSERVATION
China confirms reception of data from Gaofen-7 satellite

Changes in high-altitude winds over the South Pacific produce long-term effects

Artificial Intelligence for Earth Observation: join the UNOSAT Challenge

China launches new Earth observation satellite

EARTH OBSERVATION
Despite itchy eyes, tourists flock to Taj Mahal

Simulated sunlight reveals how 98% of plastics at sea go missing each year

Indian capital Delhi gasps under choking smog

Mothers-to-be fear for their unborn in smog-choked Delhi









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.