![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Pittsburgh PA (SPX) May 27, 2016
A research group from the CERN Cloud experiment, including scientists from Carnegie Mellon University's College of Engineering and Mellon College of Science, have uncovered the processes behind the formation and evolution of small atmospheric particles free from the influence of pollution. Their findings are key to creating accurate models to understand and predict global climate change. The findings are published in the May 26 issue of Nature. Clouds and aerosols-small airborne particles that can become the seeds upon which clouds form-are essential to climate predictions because they reflect sunlight back into space. Reflecting light away from Earth can have a cooling effect, masking some of the warming caused by greenhouse gases. "The best estimate is that about one-third of the warming by greenhouse gas emissions is masked by this aerosol cooling, but the fraction could be as large as half and as little as almost nothing," says Neil Donahue, professor of chemical engineering, engineering and public policy, and chemistry at Carnegie Mellon. In order to have complete climate prediction models, scientists need to incorporate clouds and aerosols into their calculations, but understanding how new aerosol particles form and grow in the atmosphere, and how they affect clouds and climate, has been challenging. Scientists involved with CERN's CLOUD experiment study use a large chamber to simulate the atmosphere and track the formation and growth of aerosol particles and the clouds they seed. The latest research shows that new particles can form exclusively from the oxidation of molecules emitted by trees without the presence of sulfuric acid. Sulfuric acid largely arises from fossil fuels, so the new findings provide a mechanism by which nature produces particles without pollution. "This softens the idea that there may be many more particles in the atmosphere today due to pollution than there were in 1750, and suggests that the pristine pre-industrial climate may have had whiter clouds than presently thought," says Donahue. The team's research has lasting climate implications. "Earth is already more than 0.8C than it was in the pre-industrial epoch, and this is with some masking by aerosol particles. As the pollution subsides, up to another 0.8C of hidden warming could emerge," says Donahue.
Related Links Carnegie Mellon University The Air We Breathe at TerraDaily.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |