Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
Closest, brightest supernova in decades is also a little weird
by Staff Writers
Berkeley CA (SPX) Mar 03, 2014


This image features a color composite of SN 2014J in the 'cigar galaxy' M82, 11.4 million light years away, made from KAIT images obtained through several different filters. The supernova is marked with an arrow. Other round objects are relatively nearby stars in our own Milky Way Galaxy. Image courtesy W. Zheng and A. Filippenko, University of California Berkeley.

A bright supernova discovered only six weeks ago in a nearby galaxy is provoking new questions about the exploding stars that scientists use as their main yardstick for measuring the universe.

Called SN 2014J, the glowing supernova was discovered by a professor and his students in the United Kingdom on Jan. 21, about a week after the stellar explosion first became visible as a pinprick of light in its galaxy, M82, 11.4 million light years away. Still visible today through small telescopes in the Big Dipper, it is the brightest supernova seen from Earth since SN1987A, 27 years ago, and may be the closest Type Ia supernova - the kind used to measure cosmic distances - in more than 77 years.

When University of California, Berkeley, astronomer Alex Filippenko's research team looked for the supernova in data collected by the Katzman Automatic Imaging Telescope (KAIT) at Lick Observatory near San Jose, Calif., they discovered that the robotic telescope had actually taken a photo of it 37 hours after it appeared, unnoticed, on Jan. 14.

Combining this observation with another chance observation by a Japanese amateur astronomer, Filippenko's team was able to calculate that SN 2014J had unusual characteristics - it brightened faster than expected for a Type Ia supernova and, even more intriguing, it exhibited the same unexpected, rapid brightening as another supernova that KAIT discovered and imaged last year - SN 2013dy.

"Now, two of the three most recent and best-observed Type Ia supernovae are weird, giving us new clues to how stars explode," said Filippenko, referring to a third, though apparently 'normal,' Type Ia supernova, SN 2011fe, discovered three years ago.

"This may be teaching us something general about Type Ia supernovae that theorists need to understand. Maybe what we think of as 'normal' behavior for these supernovae is actually unusual, and this weird behavior is the new normal."

A paper describing the SN 2014J observations - the first published on this newly discovered supernova - was posted online this week by The Astrophysical Journal Letters and will appear in the March 1 print issue.

Type Ia supernovae as standard candles
Astronomers noticed decades ago that Type Ia supernovae explode with about the same brightness, no matter where they are in the universe. This makes them good "standard candles" with which to judge distance.

In the 1990s, two teams (both of them included Filippenko) used Type Ia supernovae to determine the distances to galaxies, compared distance with velocity and discovered that the universe is expanding faster and faster, rather than slowing down as expected. The teams' leaders, including UC Berkeley astrophysicist Saul Perlmutter, shared the 2011 Nobel Prize in Physics for this discovery.

While the latest discoveries do not contradict these results, refinements in understanding Type Ia explosions could help improve distance measurements and lead to more precise calculations of the expansion rate of the universe, thereby setting constraints on the nature of "dark energy," a still mysterious energy comprising 70 percent of the universe and thought to be responsible for its acceleration.

The new data also provide information about the physics occurring in the core of the explosion.

A Type Ia supernova is thought to be the explosion of a white dwarf - an old and very dense star that has shrunk from the size of the Sun to the size of Earth. When a white dwarf has a stellar companion, it can sometimes gain matter from it until the white dwarf becomes unstable, completely obliterating itself through a gigantic nuclear explosion.

New telescopes to catch more supernovae
Because of the importance of supernovae in measuring the universe, many new telescopes, such as the Palomar Transient Factor in San Diego County and the Pan-STARRS in Hawaii, continually rescan the sky to discover more of them.

The KAIT telescope has a smaller field of view than newer ones do, so Filippenko's team has switched its focus to discovering supernovae earlier: it scans the same patches of sky every night or every other night. The sooner a new explosion is discovered, the sooner astronomers can capture information, such as spectra showing how the supernova brightens in different colors or wavelengths.

Last year, for example, KAIT and Filippenko's Lick Observatory Supernova Search (LOSS) team discovered and photographed SN 2013dy within two and a half hours of its appearance, earlier than for any other Type Ia. KAIT, which is operated by postdoctoral scholar WeiKang Zheng, is programmed to automatically take images of likely supernovae in five different wavelength bands, and in 2012 captured one supernova, SN 2012cg, three minutes after its discovery.

"Very, very early observations give us the most stringent constraints on what the star's behavior really is in the first stages of the explosion, rather than just relying on theoretical speculation or extrapolating back from observations at later times, which is like observing adolescents to understand early childhood," Filippenko said.

Filippenko's colleagues include Zheng; UC Berkeley graduate student Isaac Shivvers; assistant specialist Kelsey I. Clubb; postdoctoral scholars Ori D. Fox, Melissa L. Graham, Patrick L. Kelly and Jon C. Mauerhan; and amateur astronomer Koichi Itagaki of the Itagaki Astronomical Observatory in Yamagata, Japan, who captured an image of SN 2014J just 20 hours after it exploded.

.


Related Links
University of California - Berkeley
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Stream of stars in Andromeda satellite galaxy shows cosmic collision
Copenhagen, Denmark (SPX) Feb 26, 2014
The Andromeda Galaxy is surrounded by a swarm of small satellite galaxies. Researchers from the Niels Bohr Institute, among others, have detected a stream of stars in one of the Andromeda Galaxy's outer satellite galaxies, a dwarf galaxy called Andromeda II. The movement of the stars tells us that what we are observing is the remnant of a merger between two dwarf galaxies. Mergers between galaxi ... read more


STELLAR CHEMISTRY
Penn Researchers 'Design for Failure' With Model Material

In the eye of a chicken, a new state of matter comes into view

USAF reveals 'neighborhood watch' satellite program

Science publisher fooled by gibberish papers

STELLAR CHEMISTRY
ASC Signal Completes First Phase of Horizon Teleports Installation and Receives Additional Antenna Order

Soldier's Network Update: US Army Capability Set 14 to Include AN/PRC-155 Manpack Tactical Radios

New Wireless Tagging And Tracking Capability For Managing Sensitive Assets

Lockheed Martin Mobile "Network in a Box" Upgraded

STELLAR CHEMISTRY
Russia to Start Building New Manned Rocket Launch Pad in 2015

New Vostochny space center a key priority for Russian Far East

First Copernicus satellite at launch site

'Mission of Firsts' Showcased New Range-Safety Technology at NASA Wallops

STELLAR CHEMISTRY
Fifth Boeing GPS IIF Spacecraft Sends Initial Signals from Space

Russia to deploy up to 7 Glonass ground stations outside of national territory in 2014

Northrop Grumman Awarded U.S. Military Contract for Navigation Systems

Galileo works, and works well

STELLAR CHEMISTRY
Improvement in polymers for aviation

Northrop Grumman Provides Inertial Navigation Products for TiltRotor Aircraft

ARES Aims to Provide More Front-line Units with Mission-tailored VTOL Capabilities

Lockheed Martin Receives US Army Apache Targeting and Pilotage System Sustainment Contract

STELLAR CHEMISTRY
Controlling the Electronic and Magnetic Properties of Mott Thin Films

Tiny, Cheap, Foolproof: Seeking New Component to Counter Counterfeit Electronics

A cavity that you want

A Step Closer to a Photonic Future

STELLAR CHEMISTRY
NASA-JAXA Launch Mission to Measure Global Rain, Snow

NASA Building Four Spacecraft to Study Magnetic Reconnection

Counting Down to GPM

Sharp-Eyed Proba-V Works Around The Clock

STELLAR CHEMISTRY
Haze-hit Indonesian province declares emergency

Jailed Sochi ecologist sent to far-flung colony: group

Haze heavier around Beijing

China smog drives masks out of stock




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.