Space Industry and Business News  
ENERGY TECH
Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions
by Staff Writers
Oak Ridge TN (SPX) Feb 04, 2020

Illustration of a zirconium vanadium hydride atomic structure at near ambient conditions as determined using neutron vibrational spectroscopy and the Titan supercomputer at Oak Ridge National Laboratory. The lattice is comprised of vanadium atoms (in gold) and zirconium atoms (in white) enclosing hydrogen atoms (in red). Three hydrogen atoms are shown interacting at surprisingly small hydrogen-hydrogen atomic distances, as short as 1.6 angstroms. These smaller spacings between the atoms might allow packing significantly more hydrogen into the material to a point where it begins to superconduct.

An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades - a feature that could possibly facilitate superconductivity at or near room temperature and pressure.

Such a superconducting material, carrying electricity without any energy loss due to resistance, would revolutionize energy efficiency in a broad range of consumer and industrial applications.

The scientists conducted neutron scattering experiments at the Department of Energy's Oak Ridge National Laboratory on samples of zirconium vanadium hydride at atmospheric pressure and at temperatures from -450 degrees Fahrenheit (5 K) to as high as -10 degrees Fahrenheit (250 K) - much higher than the temperatures where superconductivity is expected to occur in these conditions.

Their findings, published in the Proceedings of the National Academy of Sciences, detail the first observations of such small hydrogen-hydrogen atomic distances in the metal hydride, as small as 1.6 angstroms, compared to the 2.1 angstrom distances predicted for these metals.

This interatomic arrangement is remarkably promising since the hydrogen contained in metals affects their electronic properties. Other materials with similar hydrogen arrangements have been found to start superconducting, but only at very high pressures.

The research team included scientists from the Empa research institute (Swiss Federal Laboratories for Materials Science and Technology), the University of Zurich, Polish Academy of Sciences, the University of Illinois at Chicago, and ORNL.

"Some of the most promising 'high-temperature' superconductors, such as lanthanum decahydride, can start superconducting at about 8.0 degrees Fahrenheit, but unfortunately also require enormous pressures as high as 22 million pounds per square inch, or nearly 1,400 times the pressure exerted by water at the deepest part of Earth's deepest ocean," said Russell J. Hemley, Professor and Distinguished Chair in the Natural Sciences at the University of Illinois at Chicago.

"For decades, the 'holy grail' for scientists has been to find or make a material that superconducts at room temperature and atmospheric pressure, which would allow engineers to design it into conventional electrical systems and devices. We're hopeful that an inexpensive, stable metal like zirconium vanadium hydride can be tailored to provide just such a superconducting material."

Researchers had probed the hydrogen interactions in the well-studied metal hydride with high-resolution, inelastic neutron vibrational spectroscopy on the VISION beamline at ORNL's Spallation Neutron Source. However, the resulting spectral signal, including a prominent peak at around 50 millielectronvolts, did not agree with what the models predicted.

The breakthrough in understanding occurred after the team began working with the Oak Ridge Leadership Computing Facility to develop a strategy for evaluating the data. The OLCF at the time was home to Titan, one of the world's fastest supercomputers, a Cray XK7 system that operated at speeds up to 27 petaflops (27 quadrillion floating point operations per second).

"ORNL is the only place in the world that boasts both a world-leading neutron source and one of the world's fastest supercomputers," said Timmy Ramirez-Cuesta, team lead for ORNL's chemical spectroscopy team.

"Combining the capabilities of these facilities allowed us to compile the neutron spectroscopy data and devise a way to calculate the origin of the anomalous signal we encountered. It took an ensemble of 3,200 individual simulations, a massive task that occupied around 17% of Titan's immense processing capacity for nearly a week - something a conventional computer would have required ten to twenty years to do."

These computer simulations, along with additional experiments ruling out alternative explanations, proved conclusively that the unexpected spectral intensity occurs only when distances between hydrogen atoms are closer than 2.0 angstroms, which had never been observed in a metal hydride at ambient pressure and temperature. The team's findings represent the first known exception to the Switendick criterion in a bimetallic alloy, a rule that holds for stable hydrides at ambient temperature and pressure the hydrogen-hydrogen distance is never less than 2.1 angstroms.

"An important question is whether or not the observed effect is limited specifically to zirconium vanadium hydride," said Andreas Borgschulte, group leader for hydrogen spectroscopy at Empa. "Our calculations for the material - when excluding the Switendick limit - were able to reproduce the peak, supporting the notion that in vanadium hydride, hydrogen-hydrogen pairs with distances below 2.1 angstroms do occur."

In future experiments, the researchers plan to add more hydrogen to zirconium vanadium hydride at various pressures to evaluate the material's potential for electrical conductivity. ORNL's Summit supercomputer - which at 200 petaflops is over 7 times faster than Titan and since June 2018 has been No. 1 on the TOP500 List, a semiannual ranking of the world's fastest computing systems - could provide the additional computing power that will be required to analyze these new experiments.


Related Links
Oak Ridge National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Electronic map reveals 'rules of the road' in superconductor
Houston TX (SPX) Dec 09, 2019
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals the "rules of the road" for electrons both in normal conditions and in the critical moments just before the material transforms into a superconductor. In a study online this week in the American Physical Society journal Physical Review X (PRX), physicist Ming Yi and colleagues offer up a band structure map for iron selenide, a material that ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
UNH researchers find clues to how hazardous space radiation begins

Can wood construction transform cities from carbon source to carbon vault

Sustainable 3D-printed super magnets

"Breakthrough" 3D-printed rocket engine tests completed in Fife, Scotland

ENERGY TECH
NASA's Laser Communications Relay Demonstration Mission Leaves Goddard Space Flight Center

Protecting wideband RF systems in congested electromagnetic environments

General Dynamics receives $730M for next-gen satcom system

Airbus' marks 50 years in Skynet secure satellite communications for UK

ENERGY TECH
ENERGY TECH
Space Force decommissions 26-year-old GPS satellite to make way for GPS 3 constellation

Using artificial intelligence to enrich digital maps

Galileo now replying to SOS messages worldwide

China's international journal Satellite Navigation launched

ENERGY TECH
Boeing, Navy fly two unmanned EA-18G Growlers in test mission

Chinese tourism, the main engine of global travel

Lockheed Martin receives $2.3B deal for helicopter parts maintenance

Boeing lands $84.1M deal to integrate ADCP II boxes into F-15 platform

ENERGY TECH
A quantum of solid

Coupled quantum dots may offer a new way to store quantum information

NRL researchers' golden touch enhances quantum technology

Dutch tech firm caught in US-China row

ENERGY TECH
January 2020 warmest on record: EU climate service

The fingerprints of paddy rice in atmospheric methane concentration dynamics

Another reason to reduce man-made ozone: To cool a warming planet

Artificial intelligence to rebuild Iraq via second phase of the UNOSAT challenge

ENERGY TECH
UD study maps areas of high Microplastic concentrations in the Delaware Bay

'Open bar' for rats as Paris pension strikes hit waste collection

Uruguayan project uses virtual money to encourage plastic recycling

How your clothes become microfibre pollution in the sea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.