Space Industry and Business News  
ENERGY TECH
Chinese researchers develop new battery technology
by Staff Writers
Beijing, China (SPX) Mar 29, 2016


Schematic structure of the AGDIB. Image courtesy Professor TANG Yongbin.

A Chinese research team from the Shenzhen Institutes of Advanced Technology (SIAT) of the Chinese Academy of Sciences has developed a novel, environmentally friendly low-cost battery that overcomes many of the problems of lithium ion batteries (LIB).

The new aluminum-graphite dual-ion battery (AGDIB) offers significantly reduced weight, volume, and fabrication cost, as well as higher energy density, in comparison with conventional LIBs. AGDIB's electrode materials are composed of environmentally friendly low cost aluminum and graphite only, while its electrolyte is composed of conventional lithium salt and carbonate solvent.

The discovery is particularly important given rising battery demand and existing LIB technology, which is reaching its limit in specific energy (by weight) and energy density (by volume).

LIBs are widely used in portable electronic devices, electric vehicles and renewable energy systems. Battery disposal creates major environmental problems, since most batteries contain toxic metals in their electrodes. According to the Freedonia Group, world battery demand is expected to rise 7.7% annually, reaching US$120 billion in 2019.

"Compared with conventional LIBs, this battery (AGDIB) shows an obvious advantage in production cost (~ 50% lower), specific density (~1.3-2.0 times), and energy density (~1.6-2.8 times)," said TANG Yongbing, leader of the research team. The AGDIB mechanism follows a dual ion intercalation/alloying process.

Upon charging, anions in the electrolyte intercalate into the graphite cathode, while the Li+ ions in the electrolyte deposit onto the aluminum counter electrode to form an Al-Li alloy. The discharge process is the reverse of the charging process, where both anions and Li+ ions diffuse back into the electrolyte.

Since the Al counter electrode in the AGDIB acts as the anode and the current collector at the same time, the dead load and dead volume of the AGDIB is significantly reduced, making a battery with both high specific energy density and high volume energy density.

In its research, the team roughly estimated the specific energy density and power density of the AGDIB according to the configuration of packaged battery. Results show that the AGDIB can deliver a specific energy density of ~222 Wh kg?1 at a power density of 132 W kg?1, and ~150 Wh kg?1 at 1200 W kg?1. Compared with commercial LIB (~200 Wh kg?1 at 50 W kg?1, and ~100 Wh kg?1 at 1000 W kg?1) and electrochemical capacitors (~5 Wh kg?1 at 5000 W kg?1), the AGDIB showed significantly improved performance.

Importantly, the volume energy density of the AGDIB can reach ~560Wh/L, which is much higher than traditional batteries (~350 Wh/L for Tesla Model S and ~200 Wh/L for BYD E6). For example, a 500 kg AGDIB-based power battery could reach a recharge mileage of ~550 km (~425 km for Tesla Model S and ~225 km for BYD E6), and a 200 L AGDIB-based power battery could reach a mileage of about 560 km.

This AGDIB shows real potential for large-scale application in both electronic devices and electric vehicles. This technology may represent a revolutionary step for China's energy industry. The successful commercialization of this new type battery has great potential to significantly enhance the performance of portable electronic devices, electric vehicles, and renewable energy systems, etc.

The research, published in "A Novel Aluminum-Graphite Dual-Ion Battery," recently appeared in Advanced Energy Materials (IF=16.146).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Chinese Academy of Sciences Headquarters
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
MIT develops nontoxic way of generating portable power
Boston MA (SPX) Mar 21, 2016
The batteries that power the ubiquitous devices of modern life, from smartphones and computers to electric cars, are mostly made of toxic materials such as lithium that can be difficult to dispose of and have limited global supplies. Now, researchers at MIT have come up with an alternative system for generating electricity, which harnesses heat and uses no metals or toxic materials. The ne ... read more


ENERGY TECH
A new model for how twisted bundles take shape

Local fingerprint of hydrogen bonding captured in experiments

Lehigh scientists extend the reach of single crystals

A new-structure magnetic memory device developed

ENERGY TECH
In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

Airbus continues operating German military satellites

BAE Systems supports Navy communications and electronics

ENERGY TECH
MHI signs H-IIA launch deal for UAE Mars mission

Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ENERGY TECH
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

ENERGY TECH
Mozambique debris 'almost certainly from MH370'

New material could make aircraft deicers a thing of the past

Flying wing-shaped airplane validating new wing design method

Mozambique debris 'almost certainly from MH370': Australia

ENERGY TECH
Replacement for silicon devices looms big with ORNL discovery

Protected Majorana states for quantum information

DNA 'origami' could help build faster, cheaper computer chips

Magnetic chips could dramatically increase energy efficiency of computers

ENERGY TECH
Russia Prepared to Offer Launch Options for Morocco's Satellite

Jason-3 Begins Mapping Oceans, Sees Ongoing El Nino

Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

ENERGY TECH
Beirut trash clean-up begins as critics cry foul

Mercury rising?

'Chemical Chernobyl': activists say toxic dump threatens St. Petersburg

Mexico City lifts air pollution alert









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.