Subscribe free to our newsletters via your
. Space Industry and Business News .




NANO TECH
Chemists make new silicon-based nanomaterials
by Staff Writers
Providence RI (SPX) Apr 01, 2015


Chemists from Brown University have come up with a way to make new nanomaterials from a silicon-based compound. The materials can be made in a variety of morphologies and could be used in semiconductor devices, optics or batteries. Image courtesy Koski lab / Brown University.

In a paper published in the journal Nanoletters, the researchers describe methods for making nanoribbons and nanoplates from a compound called silicon telluride. The materials are pure, p-type semiconductors (positive charge carriers) that could be used in a variety of electronic and optical devices. Their layered structure can take up lithium and magnesium, meaning it could also be used to make electrodes in those types of batteries.

"Silicon-based compounds are the backbone of modern electronics processing," said Kristie Koski, assistant professor of chemistry at Brown, who led the work. "Silicon telluride is in that family of compounds, and we've shown a totally new method for using it to make layered, two-dimensional nanomaterials."

Koski and her team synthesized the new materials through vapor deposition in a tube furnace. When heated in the tube, silicon and tellurium vaporize and react to make a precursor compound that is deposited on a substrate by an argon carrier gas. The silicon telluride then grows from the precursor compound.

Different structures can be made by varying the furnace temperature and using different treatments of the substrate. By tweaking the process, the researchers made nanoribbons that are about 50 to 1,000 nanometers in width and about 10 microns long. They also made nanoplates flat on the substrate and standing upright.

"We see the standing plates a lot," Koski said. "They're half hexagons sitting upright on the substrate. They look a little like a graveyard."

Each of the different shapes has a different orientation of the material's crystalline structure. As a result, they all have different properties and could be used in different applications.

The researchers also showed that the material can be "doped" through the use of different substrates. Doping is a process through which tiny impurities are introduced to change a material's electrical prosperities.

In this case, the researchers showed that silicon telluride can be doped with aluminum when grown on a sapphire substrate. That process could be used, for example, to change the material from a p-type semiconductor (one with positive charge carriers) to an n-type (one with negative charge carriers).

The materials are not particularly stable out in the environment, Koski says, but that's easily remedied.

"What we can do is oxidize the silicon telluride and then bake off the tellurium, leaving a coating of silicon oxide," she said. "That coating protects it and it stays pretty stable."

From here, Koski and her team plan to continue testing the material's electronic and optical properties. They're encouraged by what they've seen so far.

"We think this is a good candidate for bringing the properties of 2-D materials into the realm of electronics," Koski said.

Koski's co-authors on the paper were postdoctoral researcher Sean Keuleyan, graduate student Mengjing Wang, and undergraduates Frank Chung and Jeffrey Commons. The paper is available here


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
UW scientists build a nanolaser using a single atomic sheet
Seattle WA (SPX) Mar 30, 2015
University of Washington scientists have built a new nanometer-sized laser - using the thinnest semiconductor available today - that is energy efficient, easy to build and compatible with existing electronics. Lasers play essential roles in countless technologies, from medical therapies to metal cutters to electronic gadgets. But to meet modern needs in computation, communications, imaging ... read more


NANO TECH
Study reveals novel technique for handling molecules

Twisted nanofibers create structures tougher than bulletproof vests

A method to simplify pictures makes chemistry calculations a snap

Metals used in high-tech products face future supply risks

NANO TECH
Rockwell Collins intros new military communications system

NATO country orders tactical radios

Unfurlable Mesh Antennas Deployed On Third MUOS Satellite

Harris continues engineering support for government communications

NANO TECH
Soyuz Installed at Baikonur, Expected to Launch Wednesday

Soyuz ready March 27 flight to deploy two Galileo navsats

UAE Moves to Purchase Russian Spacecraft Launch Platform

Russia Launches Satan Missile With S Korean Kompsat 3A Satellite

NANO TECH
India Launches Fourth Satellite in Effort to Develop Own Navigation System

Europe resumes Galileo satnav deployment

Countdown Begins for ISRO's Navigation Satellite Launch

Europe poised to launch more navigation satellites

NANO TECH
KAI preferred bidder for new Korean Air Force jet

Thailand admits 'urgent' need to improve aviation safety

Australia commissions MH-60R Seahawk training simulator

Dutch seek BUK missile witnesses in MH17 crash probe

NANO TECH
Next important step toward quantum computer

Superfast computers a step closer as a silicon chip's quantum capabilities are improved

'Goldilocks material' could change spintronics

Twisted light increases efficiency of quantum cryptography systems

NANO TECH
UK data hub will maximize benefits of Europe's EO program

US and UAE Ink Bilateral Space Cooperation

Space Radar Helps Track Underground Water Pollution Risk

New NASA Mission to Study Ocean Color, Airborne Particles and Clouds

NANO TECH
Models in gas masks highlight Indonesian environmental devastation

Lisbon, Luxembourg rank Europe's worst for pollution fight: study

Air pollutants may bolster airborne allergens

Paris forces even-numbered cars off roads to fight smog




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.