Subscribe free to our newsletters via your
. Space Industry and Business News .




EPIDEMICS
Chemists help develop a novel drug to fight malaria
by Staff Writers
Seattle WA (SPX) Jul 16, 2015


Malaria parasites among normal red blood cells. Image courtesy CDC/Mae Melvin. For a larger version of this image please go here.

An international team of scientists - led by researchers from the University of Washington and two other institutions - has announced that a new compound to fight malaria is ready for human trials. In a new paper published July 15 in Science Translational Medicine, they show that this compound is the first to cripple a critical protein that the malaria parasite needs to survive at different stages of its complex life cycle, and is suitable for clinical tests in humans.

If human trials underway are successful, the compound - known by its acronym DSM265 - could give doctors a new tool to prevent and treat infection by the microscopic parasites that cause malaria, a mosquito-borne disease that kills more than 500,000 people annually.

The team's efforts stem from new, streamlined processes to identify and optimize chemical compounds that show promise against malaria parasites. The scientists in this international partnership - spanning 20 institutions on three continents - pooled their collective expertise to accelerate the pace of discovery and validation. This novel anti-malarial drug is their first major breakthrough for use in humans.

"This is the first of a new class of molecules that's going into humans," said UW chemistry professor Pradipsinh Rathod, one of the founders and leaders of this endeavor. "Until now, everything else in humans has been variations of drugs that have been developed in the distant past."

DSM265 targets a cellular protein made by the malaria parasite. Malaria parasites rely on this protein - known by its acronym DHODH - to express their genes and copy those genes when it's time to divide. Since DHODH provides a critical function, this drug could impair the parasite at multiple stages of its life cycle, including one elusive stage when it hides in the human host's liver.

Rathod's partners include Margaret Phillips with the University of Texas Southwestern Medical Center at Dallas and Susan Charman at Monash University in Melbourne. The three research groups and their recent partners in Europe, Australia and the U.S. shared information and divided tasks openly, playing to the strengths of each group. Rathod's lab at the UW was involved from the start.

"All the enabling chemistry work was done here first, and all the tests on malaria parasite cells and human cells started and have continued here," said Rathod.

Since DHODH performs such a critical role in malaria cells, scientists had long sought drugs that would inactivate it. The Texas researchers studied the malaria DHODH protein, working to identify a chemical compound that would cripple it.

Once they found a chemical that showed promise, Rathod's lab undertook validation, modification, and fine-tuning. With additional guidance and collaboration from advisors at the Medicines for Malaria Venture, Rathod's group altered the chemical compound to increase its potency against DHODH.

They also had to ensure that the compound would not target the human version of the DHODH protein, which performs an important role in our cells. In all, Rathod's group made more than 500 versions of the initial compound and tested how well it inhibited malaria parasites in the lab. The 265th version - DSM265 - showed the most promise.

"'DSM' actually stands for 'Dallas-Seattle-Melbourne,' our three cities," said Rathod. "We wanted to name it after our founding teams that are working really hard at each site."

Rathod and his group passed DSM265 and related compounds to their collaborators at Monash University, who tested how our human cells might modify or metabolize the compound. These experiments ensured that a drug based on DSM265 would last for a long time in our bodies - an ideal feature for a single-dose anti-malarial treatment - and would not produce toxic byproducts. They also determined what doses of the compound might be the most effective in humans.

Rathod's lab also developed and performed experiments to test how well the malaria parasite might evolve to become resistant against DSM265.

"We developed methods to watch the malaria parasites mutate and try to generate solutions against DSM265 in real time," said Rathod. "And with whole genome sequencing, we can really look at the whole scene as it's unfolding in front of us."

If doctors know the conditions that permit the malaria parasite to develop resistance to DSM265, they can tailor the drug's use in a clinical setting to lower that risk.

Rathod hopes that the development and discovery pipeline for DSM265 will pave the way for a faster and more collaborative drug development process in what he calls "the long war against malaria." The project benefited from an open process, Rathod said. Researchers also transferred their patent rights for DSM265 to the Medicines for Malaria Venture, a Bill and Melinda Gates Foundation-supported nonprofit public-private partnership that is leading some of the clinical and field trials, in the hopes of accelerating the drug's clinical development.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Washington
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EPIDEMICS
Algerian women with HIV suffer 'double punishment'
Algiers (AFP) July 9, 2015
Like many women in Algeria infected by their husbands with HIV, 30-year-old Sihem is a victim twice over, living with her disease and suffering as a social outcast. Infected by her husband at age 20, Sihem has spent a decade living with the stigma that comes with being infected with HIV in Algeria. "I divorced and went off with HIV. My husband told everybody I had AIDS," she said, misty ... read more


EPIDEMICS
Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem

Brownian motion phenomena of self-powered liquid metal motors

Omnidirectional free space wireless charging developed

EPIDEMICS
Lockheed Martin set to advance RF sensors development

Navy engineer invents new data transmission system

Fourth MUOS arrives in Florida for August launch

Airbus DS unveils new mobile welfare communication portfolio

EPIDEMICS
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

EPIDEMICS
Russian, Chinese Navigation Systems to Accommodate BRICS Members

Russia, India Cooperate on Space Exploration, Glonass Satellite System

China's Beidou navigation system more resistant to jamming

Global Positioning System: A Generation of Service to the World

EPIDEMICS
China Eastern orders 50 Boeing planes in $4.6 bn deal

Solar Impulse grounded in Hawaii for repairs

Climate change activists protest on Heathrow runway

Which electric plane crossed the English Channel first?

EPIDEMICS
Dutch hi-tech group ASML post small Q2 income dip

The quantum middle man

Fabricating inexpensive, high-temp SQUIDs for future electronic devices

Spintronics advance brings wafer-scale quantum devices closer to reality

EPIDEMICS
Near-Earth space hosts Kelvin-Helmholtz waves

Oregon experiments open window on landscape formation

Sentinel-2A completes critical first days in space

Beijing Quadrupled in Size in a Decade

EPIDEMICS
Severe harmful algal bloom for Lake Erie predicted

Pope urges dialogue, launches environmental SOS in Ecuador

The Good, the Bad, and the Algae

Water used for hydraulic fracturing varies widely across United States




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.