Space Industry and Business News  
CARBON WORLDS
Chemical route towards electronic devices in graphene
by Staff Writers
Helsinki, Finland (SPX) Jul 27, 2017


Schematic of the synthesis procedure for the graphene nanoribbon heterostructures: Precursor molecules are converted through chemical synthesis into precisely controlled graphene nanoribbons. Image courtesy Aalto University, Utrecht University, TU Delft.

The 'wonder material' graphene has many interesting characteristics, and researchers around the world are looking for new ways to utilise them. Graphene itself does not have the characteristics needed to switch electrical currents on and off and smart solutions must be found for this particular problem. "We can make graphene structures with atomic precision.

By selecting certain precursor substances (molecules), we can code the structure of the electrical circuit with extreme accuracy," explains Peter Liljeroth from Aalto University, who conceived the research project together with Ingmar Swart from Utrecht University.

The electronic properties of graphene can be controlled by synthesizing it into very narrow strips (graphene nanoribbons). Previous research has shown that the ribbon's electronic characteristics are dependent on its atomic width. A ribbon that is five atoms wide behaves similarly to a metallic wire with extremely good conduction characteristics, but adding two atoms makes the ribbon a semiconductor.

"We are now able to seamlessly integrate five atom-wide ribbons with seven atom-wide ribbons. That gives you a metal-semiconductor junction, which is a basic building block of electronic components," according to Ingmar Swart.

Chemistry on a surface
The researchers produced their electronic graphene structures through a chemical reaction. They evaporated the precursor molecules onto a gold crystal, where they react in a very controlled way to yield new chemical compounds. "This is a different method from that currently used to produce electrical nanostructures, such as those on computer chips. For graphene, it is so important that the structure is precise at the atomic level and it is likely that the chemical route is the only effective method," Ingmar Swart concludes.

Electronic characteristics
The researchers used advanced microscopic techniques to also determine the electronic and transport characteristics of the resulting structures. It was possible to measure electrical current through a graphene nanoribbon device with an exactly known atomic structure.

"This is the first time where we can create e.g. a tunnel barrier and really know its exact atomic structure. Simultaneous measurement of electrical current through the device allows us to compare theory and experiment on a very quantitative level," says Peter Liljeroth.

Research Report: P.H. Jacobse, A. Kimouche, T. Gebraad, M.M. Ervasti, J.M. Thijssen, P. Liljeroth and I. Swart, Electronic components embedded in a single graphene nanoribbon, Nature Communications, doi: 10.1038/s41467-017-00195-2.

CARBON WORLDS
Flourine lends white graphene new qualities
Washington (UPI) Jul 14, 2017
With just a bit of fluorine, white graphene becomes a wide-bandgap semiconductor with magnetic properties. The new material could be used in electronics designed to perform under extreme conditions. White graphene is a two-dimensional atomic sheet of hexagonal boron nitride. Its hexagonal structure is similar to that of regular graphene, but the atomic layer is made up of boron nitride, ... read more

Related Links
Aalto University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Writing with the electron beam: Now in silver

Scientists announce the quest for high-index materials

A new synthesis route for alternative catalysts of noble metals

Synthetic materials systems that can "count" and sense their size

CARBON WORLDS
North Dakota UAS Training Center Depends on IGC Satellite Connectivity

First UAVs, Now Ships - Connectivity for the next generation of remote naval operations

Northrop Grumman receives Australian satellite ground station contract

DISA extends Comtech satellite services to Marines

CARBON WORLDS
CARBON WORLDS
IAI, Honeywell Aerospace team for GPS anti-jam system

Russia, China to Set Up Pilot Zone to Test National Navigation Systems

India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

CARBON WORLDS
France and Germany announce new joint fighter program

Honeywell, Pratt and Whitney contracted by Air Force for power system support

Lockheed Martin expects F-35 software development to finish by end of 2017

Rising temperatures spell plane take-off woes: study

CARBON WORLDS
Magnetic quantum objects in a 'nano egg-box'

Thinking thin brings new layering and thermal abilities to the semiconductor industry

Five times the computing power

Manipulating electron spins without loss of information

CARBON WORLDS
Nickel key to Earth's magnetic field, research shows

Airbus built Sentinel-5 Precursor satellite ready for launch

Early Airborne Results Address South Korean Air Quality

North American monsoon storms fewer but more extreme

CARBON WORLDS
Cambodia bans overseas exports of coastal sand

Thousands protest call to curb incense burning in Taiwan

Soil filters out some emerging contaminants before reaching groundwater

Fewer 'good air' days in China despite official efforts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.