Space Industry and Business News  
NANO TECH
Change the face of nanoparticles and you'll rule chemistry
by Staff Writers
Warsaw, Poland (SPX) May 29, 2018

Just like a policeman controlling traffic made up of cars of different brands and types, nanoparticles coated with light-reactive catalysts can control the course of many chemical reactions simultaneously. The idea of a new method of managing the course of chemical reactions is presented by Magdalena Szewczyk and Grzegorz Sobczak, PhD students at the Institute of Physical Chemistry PAS in Warsaw.

Change the face of nanoparticles and you'll rule chemistry! Depending on the lighting, the surface of appropriately crafted nanoparticles can change its topography. Researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences have shown that the molecular mechanism they have designed makes it possible, by the use of light, to effectively uncover or hide catalyst molecules. The technique they present leads to qualitatively new possibilities to control the course of chemical reactions.

Using nanoparticles with surfaces that change appearance under the influence of light, it is possible to easily and precisely control the course of practically any catalytic chemical reactions, including those with many stages. A key element of the new technique, developed and demonstrated by researchers from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) in Warsaw, is the mechanism of geometric masking of active catalyst centres on the surfaces of nanoparticles.

This class of new, intelligent materials made of soft and hard matter, described in the prestigious chemical journal ACS Catalysis, heralds a qualitative change in the field of industrial catalytic reactions and is an important stage in the design of chemical systems mimicking the most important features of living organisms.

A catalyst is a substance that causes a reaction between specific chemical compounds, actively participating in it and largely reverting to its original state after its completion. Nowadays, catalysts are generally designed to optimize catalysed reactions and reduce the consumption of catalyst. Attention is paid, among others, to their selectivity, that is, their ability to accelerate one, precisely chosen reaction. However, there is no great control over catalysts constructed in this manner. After introduction into the solution they usually work immediately until the reaction stops.

One of the most convenient tools that can be used to influence chemical compounds in solutions are light waves with energies suited to the properties of the particular system. Light can be easily introduced into the entire volume of the liquid, and in general it does not interfere with the course of the catalytic reactions themselves. Now, it turns out that the chemical system can be designed so that, depending on the lighting, it does or does not catalyse various chemical reactions.

The concept of light control of catalyst activity, proposed by the chemists from the IPC PAS, is most easily understood by making an analogy with sunflowers. These are plants with long, stiff stems, at the end of which there is a heavy basket with seeds. During the day, the head of the sunflower is always directed towards the light, that is, upwards - allowing it to attract insects and birds. When night falls, however, the head does not curl up like other flowers. At its base, the stem just bends, the basket falls down and the whole inflorescence ceases to be accessible.

"Our key molecular complex behaves like sunflowers, only on a molecular scale. The soil on which our 'sunflowers' grow is the gold nanoparticle, the stem - a long organic ligand molecule, the bending fragment - a photo-switch that changes its shape under the influence of light. The basket is the catalyst itself. The only difference is that our 'sunflowers' are a little bit... shy: they hide their catalytic heads when it becomes bright around them and they raise them when it is dark," explains Dr Volodymyr Sashuk (IPC PAS).

In recent years, scientists from the IPC PAS have not only developed the concept of an innovative method of controlling catalysis, but also tested it in practice, building a real, model chemical system. It was constructed using gold nanoparticles with dimensions of three nanometres and one of the simplest catalysts: an amino acid called proline. The method itself, however, does not impose any specific restrictions, so potentially any other catalyst can be used, functionally transforming it into a variant whose activity is controlled by means of light.

"The production of nanoparticles coated with ligands with attached catalyst particles is not particularly difficult, it does, however, require some care and attention. For example, the proportions between the number of ligands with a catalyst molecule and the number of ligands without it are important. If there are too many empty ligands, the catalyst molecules will have nowhere to physically hide, and we can forget about control," says PhD student Magdalena Szewczyk (IPC PAS).

Light-controlled nanoparticles catalysing chemical reactions promise a new phase in the development of catalysis. Thus far, the catalytic reactions have been typically carried out in one solution containing the necessary substrates and a single catalyst. Now, new opportunities are emerging.

Potentially, the same solution may contain substrates for multistage catalytic reactions and a range of catalysts, each activated with light at appropriate times. As a result, several component reactions producing the chemicals necessary at later stages of a technological process, at which the new reaction would be triggered after the previous reactions were stopped, could take place in one vessel at a time. But these are not the only advantages of the new solution.

"Until now, after the reaction chemists were left with a solution containing both the product and the catalyst. Removal of the latter was often associated with the need to develop additional technological steps. In our method, the catalyst is deposited on nanoparticles.

Potentially, these particles can be adjusted so that they react, for example, to a magnetic field. After completing the reaction, it would be sufficient to attract the nanoparticles to the bottom of the vessel, where they could be easily separated from the product itself," notes PhD student Grzegorz Sobczak (IPC PAS).

The future of multistage, precisely light-controlled catalysis promises to be interesting. The new generation multi-component mixtures could, for example, harden only on the user's demand, so it would be possible to fill all sorts of moulds, even very complex shapes, more accurately.

A popular solution will probably be convenient multi-component polymer adhesives, immediately delivered in a mixed, ready to spread form. These are just some of the ideas being considered today. Researchers from the IPC PAS are still looking for ideas on how their concept could translate into specific applications.

Research paper


Related Links
Institute of Physical Chemistry of the Polish Academy of Sciences
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


NANO TECH
NIST puts the optical microscope under the microscope to achieve atomic accuracy
Washington DC (SPX) May 28, 2018
Over the last two decades, scientists have discovered that the optical microscope can be used to detect, track and image objects much smaller than their traditional limit - about half the wavelength of visible light, or a few hundred nanometers. That pioneering research, which won the 2014 Nobel Prize in Chemistry, has enabled researchers to track proteins in fertilized eggs, visualize how molecules form electrical connections between nerve cells in the brain, and study the nanoscale motion of min ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Japan to receive digital radar systems from Raytheon

Phase Four Signs Contract with NASA to Vet its Propulsion System for Upcoming Small Satellite Missions

Phase Four Tapped by Astro Digital as Certified Propulsion Provider for Landmapper Constellation

Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers

NANO TECH
Lockheed Martin's 5th AEHF comsat completes launch environment test

IAP Worldwide Services tapped for satellite systems

Hughes to prototype Multi-Modem Adaptor for Wideband SATCOM use

Navy awards contract to ViaSat for aircraft communication systems

NANO TECH
NANO TECH
China to launch two BeiDou-2 backup satellites

Research shows how 'navigational hazards' in metro maps confuse travelers

UK set to demand EU repayment in Brexit satellite row

China to launch another 11 BeiDou-3 satellites in 2018

NANO TECH
Zero 2 Infinity completed another successful launch from Europe's Stratoport, this time for Airbus

French Rafales keep training edge on US aircraft carrier

Army contracts Lockheed for PAC-3 ground, test support

Lockheed taps BAE for F-35 readiness support

NANO TECH
Time crystals may hold secret to coherence in quantum computing

Switched on leads to breakthrough for spintronics

Tunable diamond string may hold key to quantum memory

Researchers control the properties of graphene transistors using pressure

NANO TECH
The case of the relativistic particles solved with NASA missions

Researchers Use Satellite Imagery to Map Economic Inequality Among Indians

Sentinels modernise Europe's agricultural policy

NASA awards options for 2 Joint Polar Satellite System satellites

NANO TECH
Kicking the car(bon) habit better for air pollution than technology revolution

Quake helps clear the blackened air over Nepal's brick kilns

Quake helps clear the blackened air over Nepal's brick kilns

Poland to probe string of blazes at landfills









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.