Subscribe free to our newsletters via your
. Space Industry and Business News .




CARBON WORLDS
Catching graphene butterflies
by Staff Writers
Manchester, UK (SPX) May 17, 2013


Graphene, combined with white graphene, forms stunning 'butterfly' images. Credit: The University of Manchester.

Writing in Nature, a large international team led Dr Roman Gorbachev from The University of Manchester shows that, when graphene placed on top of insulating boron nitride, or 'white graphene', the electronic properties of graphene change dramatically revealing a pattern resembling a butterfly.

The pattern is referred to as the elusive Hofstadter butterfly that has been known in theory for many decades but never before observed in experiments.

Combining graphene with other materials in multiple-layered structures could lead to novel applications not yet explored by science or industry.

Graphene is the world's thinnest, strongest and most conductive material, and promises a vast range of diverse applications; from smartphones and ultrafast broadband to drug delivery and computer chips. It was first demonstrated at The University of Manchester in 2004.

Initial trials of consumer products involving graphene-based touch screens and batteries for mobile phones and composite materials for sports goods are being carried out by major multinational companies.

One of the most remarkable properties of graphene is its high conductivity - thousands of times higher than copper. This is due to a very special pattern created by electrons that carry electricity in graphene. The carriers are called Dirac fermions and mimic massless relativistic particles called neutrinos, studies of which usually require huge facilities such as at CERN. The possibility to address similar physics in a desk-top experiment is one of the most renowned features of graphene.

Now the Manchester scientists have found a way to create multiple clones of Dirac fermions. Graphene is placed on top of boron nitride so that graphene's electrons can 'feel' individual boron and nitrogen atoms. Moving along this atomic 'washboard', electrons rearrange themselves once again producing multiple copies of the original Dirac fermions.

The researchers can create even more clones by applying a magnetic field. The clones produce an intricate pattern; the Hofstadter butterfly. It was first predicted by mathematician Douglas Hofstadter in 1976 and, despite many dedicated experimental efforts, no more than a blurred glimpse was reported before.

In addition to the described fundamental interest, the Manchester study proves that it is possible to modify properties of atomically-thin materials by placing them on top of each other. This can be useful, for example, for graphene applications such as ultra-fast photodetectors and transistors, providing a way to tweak its incredible properties.

Professor Andre Geim, Nobel Laureate and co-author of the paper, said: "Of course, it is nice to catch the beautiful 'butterfly' which elusiveness tormented physicists for generations.

"More importantly, this work shows that we are now able to build up a principally new kind of materials by stacking individual atomic planes in a desired sequence."

Dr Gorbachev added: "We prepared a set of different atomically-thin materials similar to graphene then stacked them on top of each other, one atomic plane at a time. Such artificial crystals would have been science fiction a few years ago. Now they are reality in our lab. One day you might find these structures in your gadgets."

Professor Geim added: "This is an important step beyond 'simple graphene'. We now build foundations for a new research area that seems richer and even more important than graphene itself."

The Manchester paper is collaboration that involved researchers from the University of Lancaster in the UK, Instituto de Ciencia de Materiales de Madrid in Spain and National High-Field Laboratory in Grenoble, France. It will appear in Nature back to back with another paper reporting similar butterflies in two layers of graphene, which comes from a group of Dr Philip Kim Columbia University.

.


Related Links
University of Manchester
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
Graphene joins the race to redefine the ampere
Cambridge, UK (SPX) May 16, 2013
A new joint innovation by the National Physical Laboratory (NPL) and the University of Cambridge could pave the way for redefining the ampere in terms of fundamental constants of physics. The world's first graphene single-electron pump (SEP), described in a paper in Nature Nanotechnology, provides the speed of electron flow needed to create a new standard for electrical current based on electron ... read more


CARBON WORLDS
NASA Seeks High-Performance Spaceflight Computing Capabilities

SPUTNIX is granted a license for space activity

Stanford Engineers' New Metamaterial Doubles Up on Invisibility

Observation of second sound in a quantum gas

CARBON WORLDS
US Navy And Lockheed Martin Deliver Secure Communications Satellite For Mobile Users

Making frequency-hopping radios practical

Northrop Grumman Proves Concept for New B-2 Satellite Communication System

US Navy and Lockheed Martin Deliver Newest Secure Communications Satellite for Mobile Users

CARBON WORLDS
O3b Networks' initial satellite is fueled for Arianespace's upcoming Soyuz launch from the Spaceport

Ariane Flight VA214's launch vehicle marks a preparation milestone

ILS Proton Successfully Launches EUTELSAT 3D for Eutelsat

Russia's Proton-M Spacecraft Set to Orbit French Satellite

CARBON WORLDS
Pakistan adopts Chinese rival GPS satellite system

China's BeiDou satellite navigation system has broad commercial uses

Fourth Boeing GPS IIF Satellite Joins Constellation on Orbit

First new Galileo satellite arrives at ESA for space testing

CARBON WORLDS
Saab upgrading bid for Brazil FX-2 contest

China 'will not accept' carbon tax on EU flights: report

F-35A Completes High Angle Of Attack Testing

India commissions first MiG-29K fighters

CARBON WORLDS
Bright Future For Photonic Quantum Computers

New magnetic graphene may revolutionize electronics

Flawed Diamonds Promise Sensory Perfection

Scientists develop device for portable, ultra-precise clocks and quantum sensors

CARBON WORLDS
Team Wins Cubesat Berth to Gather Earth Energy Imbalance Measurements

NRL's MIGHTI Slated for Launch on ICON Mission

New Public Application of Landsat Images Released

1000mph land speed attempt relies on DMCii eye in the sky

CARBON WORLDS
Frog once imported for pregnancy testing brought deadly amphibian disease to US

Hong Kong launches plan to tackle waste crisis

Nearly 1,000 protest against China chemical plant

Making gold green: New non-toxic method for mining gold




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement