Space Industry and Business News  
BIO FUEL
Catalyzing the conversion of biomass to biofuel
by Staff Writers
Munich, Germany (SPX) Jul 27, 2021

stock illustration only

Zeolites are extremely porous materials: Ten grams can have an internal surface area the size of a soccer field. Their cavities make them useful in catalyzing chemical reactions and thus saving energy. An international research team has now made new findings regarding the role of water molecules in these processes. One important application is the conversion of biomass into biofuel.

Fuel made from biomass is considered to be climate-neutral, although energy is still needed to produce it: The desired chemical reactions require high levels of temperature and pressure.

"If we are to do without fossil energy sources in the future and make efficient large-scale use of biomass, we will also have to find ways to reduce the energy required for processing the biomass," says Johannes Lercher, professor for Chemical Technology at the Technical University of Munich (TUM) and Director of the Institute for Integrated Catalysis at the Pacific Northwest National Laboratory in Richland, Washington (USA).

Working together with an international research team, Lercher has taken a closer look at the role of water molecules in reactions inside the zeolite's pores, which are less than one nanometer in size.

It all starts with acids
One characteristic of an acid is that it easily donates protons. Thus, when added to water, hydrochloric acid splits into negatively charged chloride anions, like those found in table salt crystals, and positively charged protons which attach themselves to the water molecules. This results in a positively charged hydronium ion, which looks to further pass on this proton, for example to an organic molecule.

When the organic molecule is "forced" to accept a proton, it tries to stabilize itself. Thus, an alcohol can give rise to a molecule with a double bond - a typical reaction step on the path from biomass to biofuel. The zeolite walls stabilize transitional states occurring during conversion and, thus, help to minimize the amount of energy required by the reaction to occur.

Zeolites acting as acids
Zeolites contain oxygen atoms in their crystal structure which already carry a proton. Like molecular acids they form hydronium ions through the interactions with water.

However, while hydronium ions disperse in water, they remain closely associated with the zeolite. Chemical pre-treatment can vary the number of these active centers and, thus, establish a certain density of hydronium ions in the pores of the zeolite.

The ideal zeolite for every reaction
By systematically varying the size of the cavities, the density of the active sites and the amount of water, the research team was able to elucidate the pore sizes and concentrations of water which best catalyzed selected example reactions.

"In general, it's possible to increase the reaction rate by making the pores smaller and raising the charge density," Johannes Lercher explains. "However, this increase has its limits: When things get too crowded and the charges are too close to one another, the reaction rate drops again. This makes it possible to find the optimum conditions for every reaction."

"Zeolites are generally suitable as nanoreactors for all chemical reactions whose reaction partners fit into the pores and in which an acid is used as a catalyst," emphasizes Lercher. "We are at the very beginning of a development with the potential to increase the reactivity of molecules even at low temperatures and, thus, to save considerable amounts of energy in the production of fuels or chemicals."

Research Report: "Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores"


Related Links
Technical University of Munich
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


BIO FUEL
Airbus joins SAF+ Consortium to for sustainable aviation fuels
Toulouse, France (SPX) Jul 19, 2021
Airbus and the Montreal, Canada-based SAF+ Consortium have signed a Memorandum of Understanding (MoU) to collaborate with major Canadian aviation industry players on sustainable aviation fuel (SAF) development and production in North America. Airbus will be investing through "in-kind" contributions, which consist of technical and certification expertise, economic analysis, communications and advocacy. Today's announcement marks the launch of a new Canadian ecosystem dedicated to stimulating the pr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Facebook assembles team to build 'metaverse'

Water as a metal - detected at BESSY II

Metallic glass gears up for 'Cobots,' Coatings, and More

Redwire to demonstrate In-Space Additive Manufacturing on ISS for Lunar operations

BIO FUEL
Last Tianlian I satellite placed in orbit

China's relay satellites facilitate clear, smooth space-ground communication

Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

BIO FUEL
BIO FUEL
2nd SOPS accepts new GPS satellite

GMV develops a new maritime Galileo receiver

NASA extends Cyclone Global Navigation Satellite System mission

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

BIO FUEL
Evolution of the Bye Aerospace eFlyer 4 Design Continues to Advance

Indian navy receives its first two MH-60 helicopters

Air Force postpones plan to move A-10s, HH-60s to Arizona base

F-16s of the D.C. Air National Guard arrive in Saudi Arabia

BIO FUEL
Concepts for the development of German quantum computers

Ultrathin semiconductors electrically connected to superconductors for the first time

UK PM reveals govt will review Chinese purchase of semiconductor firm

Broadcom settles US antitrust case on chip market

BIO FUEL
China launches home-grown aeronautic remote-sensing system

How a sudden stratospheric warming affected the Northern Hemisphere

The origin of bifurcated current sheets explained

Pathfinder satellite paves way for constellation of tropical-storm observers

BIO FUEL
Land repair vital for survival

Hair today, green tomorrow: UK stylists join eco-drive

India's poor face outsized air pollution death risk

Airborne paint, pesticide particles are deadlier than scientists thought









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.