Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
Cardiff scientists help unlock secrets of the Universe
by Staff Writers
Cardiff, UK (SPX) Nov 17, 2014


File image.

A team of Cardiff University researchers have made a breakthrough in helping scientists discover hundreds of black holes throughout the universe. When two detectors are switched on in the US next year, the Cardiff team hope their research will help scientists pick up the faint ripples of black hole collisions millions of years ago, known as gravitational waves.

Black holes cannot be seen, but scientists hope the revamped detectors - which act like giant microphones - will find remnants of black hole collisions.

Led by Dr Mark Hannam from the School of Physics and Astronomy, the researchers have built a theoretical model which aims to predict all potential gravitational-wave signals that might be found by the detectors.

The Cardiff researchers hope it will act as a 'spotters' guide' to help scientists working with the giant LIGO detectors recognise the right waveforms and reveal the secrets of how black holes orbit into each other and collide.

Dr Hannam said: "The rapid spinning of black holes will cause the orbits to wobble, just like the last wobbles of a spinning top before it falls over. These wobbles can make the black holes trace out wild paths around each other, leading to extremely complicated gravitational-wave signals. Our model aims to predict this behaviour and help scientists find the signals in the detector data."

The Cardiff team, which includes postdoctoral researchers, PhD students, and collaborators from universities in Europe and the United States, will work with scientists across the world as they attempt to unravel the origins of the Universe.

Dr Hannam added: "Sometimes the orbits of these spinning black holes look completely tangled up, like a ball of string. But if you imagine whirling around with the black holes, then it all looks much clearer, and we can write down equations to describe what is happening. It's like watching a kid on a high-speed spinning amusement park ride, apparently waving their hands around. From the side lines, it's impossible to tell what they're doing. But if you sit next to them, they might be sitting perfectly still, just giving you the thumbs up."

The new model has been programmed into the computer codes that LIGO scientists all over the world are preparing to use to search for black-hole mergers when the detectors switch on. But there is still more work to do.

"So far we've only included these precession effects while the black holes spiral towards each other," said Dr Hannam. "We still need to work our exactly what the spins do when the black holes collide."

For that they need to perform large computer simulations to solve Einstein's equations for the moments before and after the collision. They'll need to produce many simulations to capture enough combinations of black-hole masses and spin directions to understand the overall behaviour of these complicated systems.

Dr Hannam is optimistic. "For years we were stumped on how to untangle the black-hole motion. Now that we've solved that, we know what to do next."

Time is running out. Once the detectors switch on, it will only be a matter of time before the first gravitational-wave detections are made. The calculations that Dr Hannam and his colleagues are producing have to be ready in time to make the most of them.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cardiff University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
NASA X-ray Telescopes Find Black Hole May Be a Neutrino Factory
Huntsville AL (SPX) Nov 14, 2014
The giant black hole at the center of the Milky Way may be producing mysterious particles called neutrinos. If confirmed, this would be the first time that scientists have traced neutrinos back to a black hole. The evidence for this came from three NASA satellites that observe in X-ray light: the Chandra X-ray Observatory, the Swift gamma-ray mission, and the Nuclear Spectroscopic Telescop ... read more


TIME AND SPACE
Shaking the topological cocktail of success

Drexel Engineers Improve Strength, Flexibility of Atom-Thick Films

Creating Bright X-Ray Pulses in the Laser Lab

New Process Isolates Promising Material

TIME AND SPACE
Northrop Grumman continues Joint STARS sustainment services

Harris Corporation opens engineering support facility

Lockheed Martin, Navy deliver communications satellite

Central Asian country orders Harris tactical radios

TIME AND SPACE
Time-lapse video shows Orion's move to Cape Canaveral launch pad

Soyuz Installed at Baikonur, Expected to Launch Wednesday

SpaceX chief Musk confirms Internet satellite plan

Orbital recommits to NASA Commercial program and Antares

TIME AND SPACE
Russia to place global navigation stations in China

Telit Introduces Jupiter SL871-S GPS Module

Galileo satellite set for new orbit

KVH Receives Order for Military Navigation Systems

TIME AND SPACE
Firms flock to China's fast-growing aviation market

NASA tests new shape changing aircraft flap for the first time

F-35s proving capabilities from aircraft carrier

Aircraft wings will change radically in the future

TIME AND SPACE
Space: The final frontier in silicon chemistry

New way to move flex atomically thin semiconductors

New research lights the way to super-fast computers

SLAC Study explains atomic action in high-temp superconductors

TIME AND SPACE
NASA's New Wind Watcher Ready for Weather Forecasters

GOES-S Satellite EXIS Instrument Passes Final Review

NASA Computer Model Provides a New Portrait of Carbon Dioxide

NASA Lining up ICESat-2's Laser-catching Telescope

TIME AND SPACE
Study: Six toxic flame retardants found in humans

India sending 'chilling message' on environment: Greenpeace

Sickness stalks India village with toxic water

China's Xi says he checks pollution first thing every day




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.