Space Industry and Business News
CARBON WORLDS
Capturing greenhouse gases with the help of light
Photoacids and differences between dark and light enable a cyclic process for the capture and release of CO2. (Scheme: ETH Zurich)
Capturing greenhouse gases with the help of light
by Fabio Bergamin for ETH Zurich News
Zurich, Switzerland (SPX) Jan 15, 2024

If we want to slow down global warming, we need to drastically reduce greenhouse gas emissions. Among other things, we need to do without fossil fuels and use more energy-efficient technologies. However, reducing emissions alone won't do enough to meet the climate targets. We must also capture large quantities of the greenhouse gas CO2 from the atmosphere and either store it permanently underground or use it as a carbon-neutral feed material in industry. Unfortunately, the carbon capture technologies available today require a lot of energy and are correspondingly expensive.

That's why researchers at ETH Zurich are developing a new method that uses light. With this process, in the future, the energy required for carbon capture will come from the sun.

Light-controlled acid switch
Led by Maria Lukatskaya, Professor of Electrochemical Energy Systems, the scientists are exploiting the fact that in acidic aqueous liquids, CO2 is present as CO2, but in alkaline aqueous liquids, it reacts to form salts of carbonic acid, known as carbonates. This chemical reaction is reversible. A liquid's acidity determines whether it contains CO2 or a carbonate.

To influence the acidity of their liquid, the researchers added molecules, called photoacids, to it that react to light. If such liquid is then irradiated with light, the molecules make it acidic. In the dark, they return to the original state that makes the liquid more alkaline.

This is how the ETH researchers' method works in detail: The researchers separate CO2 from the air by passing the air through a liquid containing photoacids in the dark. Since this liquid is alkaline, the CO2 reacts and forms carbonates. As soon as the salts in the liquid have accumulated to a significant degree, the researchers irradiate the liquid with light. This makes it acidic, and the carbonates transform to CO2. The CO2 bubbles out of the liquid, just as it does in a bottle of cola, and can be collected in gas tanks. When there is hardly any CO2 left in the liquid, the researchers switch off the light and the cycle starts all over again, with the liquid ready to capture CO2.

It all depends on the mixture
In practice, however, there was a problem: the photoacids used are unstable in water. "In the course of our earliest experiments, we realised that the molecules would decompose after one day," says Anna de Vries, a doctoral student in Lukatskaya's group and lead author of the study.

So Lukatskaya, de Vries and their colleagues analysed the decay of the molecule. They solved the problem by running their reaction not in water but in a mixture of water and an organic solvent. The scientists were able to determine the optimum ratio of the two liquids by laboratory experiments and were able to explain their findings thanks to model calculations carried out by researchers from the Sorbonne University in Paris.

For one thing, this mixture enabled them to keep the photoacid molecules stable in the solution for nearly a month. For another, it ensured that light could be used to switch the solution back and forth as required between being acidic and being alkaline. If the researchers were to use the organic solvent without water, the reaction would be irreversible.

Doing without heating
Other carbon capture processes are cyclical as well. One established method works with filters that collect the CO2 molecules at ambient temperature. To subsequently remove the CO2 from the filters, these have to be heated to around 100 degrees Celsius. However, heating and cooling are energy-intensive: they account for the major share of the energy required by the filter method. "In contrast, our process doesn't need any heating or cooling, so it requires much less energy," Lukatskaya says. More than that, the ETH researchers' new method potentially works with sunlight alone.

"Another interesting aspect of our system is that we can go from alkaline to acidic within seconds and back to alkaline within minutes. That lets us switch between carbon capture and release much more quickly than in a temperature-driven system," de Vries explains.

With this study, the researchers have shown that photoacids can be used in the laboratory to capture CO2. Their next step on the way to market maturity will be to further increase the stability of the photoacid molecules. They also need to investigate the parameters of the entire process to optimise it further.

Research Report:Solvation-Tuned Photoacid as a Stable Light-Driven pH Switch for CO2 Capture and Release

Related Links
ETH Zurich
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Catalytic combo converts CO2 to solid carbon nanofibers
Upton NY (SPX) Jan 12, 2024
Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could succe ... read more

CARBON WORLDS
Epic says Apple court fight is 'lost'

US, UK strikes targeted Huthi radar, missile capabilities: defense chief

D-Orbit Secures Record euro 100m in Series C Funding, Advancing Space Logistics and In-Orbit Services

NASA's Cryo Efforts Beyond the Atmosphere

CARBON WORLDS
Lockheed Martin secures $890M SDA contract for advanced missile tracking satellites

Rocket Lab secures $515M contract with Space Development Agency for Tranche 2 constellation

Viasat Secures Major U.S. Air Force Contract for Advanced Tech Integration

HawkEye 360's Pathfinder constellation complete five years of Advanced RF Detection

CARBON WORLDS
CARBON WORLDS
GMV reinforces satellite expertise with new Galileo Operations Center in Madrid

Airbus presents first flight model structure for Galileo Second Generation

Galileo Gen2 satellite production commences at Airbus facility

Galileo Second Generation satellite aces first hardware tests

CARBON WORLDS
Volocopter flying taxi seeks to seduce Paris

France orders 42 new Rafale fighter jets

India finds apparent wreckage from 2016 military plane crash

Sirius Jet: World's First Hydrogen VTOL

CARBON WORLDS
TSMC to launch chipmaking plant in Japan, but US plant to face delays

Taiwan's TSMC to launch Japan chipmaking plant in February

Solid-state qubits: Forget about being clean, embrace mess

Breakthrough in controlling magnetization for spintronics

CARBON WORLDS
NASA's PACE To Investigate Oceans, Atmospheres in Changing Climate

Sidus Marks Key Progress in AI sat tech ahead of LizzieSat-1 launch

L3Harris enhances Canada's ISR capabilities with EO/IR Systems for SkyGuardian

NASA, NOAA Launch NEON Program with SwRI-developed QuickSounder satellite

CARBON WORLDS
A new way to swiftly eliminate micropollutants from water

Senegal's Hann Bay, a paradise turned sewer, awaits clean up

Toxic heavy metal pollution in the Southern Hemisphere over the last 2,000 years

Spain politicians bicker as plastic 'nurdle' spill swamps beaches

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.