Space Industry and Business News  
TECH SPACE
'Candy cane' polymer weave could power functional fabrics and devices
by Staff Writers
New Orleans LA (SPX) Apr 17, 2018

Supercapacitors woven like the red and white of a candy cane could have increased charge storage capacity compared to current technology.

If scientists are ever going to deliver on the promise of implantable artificial organs or clothing that dries itself, they'll first need to solve the problem of inflexible batteries that run out of juice too quickly. They're getting closer, and today researchers report that they've developed a new material by weaving two polymers together in a way that vastly increases charge storage capacity.

The researchers will present their work at the 255th National Meeting and Exposition of the American Chemical Society (ACS). ACS, the world's largest scientific society, is holding the meeting here through Thursday. It features more than 13,000 presentations on a wide range of science topics.

"We had been developing polymer networks for a different application involving actuation and tactile sensing," Tiesheng Wang says. "After the project, we realized that the stretchable, bendable material we'd made could potentially be used for energy storage."

Batteries, specifically lithium-ion batteries, dominate the energy storage landscape. However, the chemical reactions underlying the charging and discharging process in batteries are slow, limiting how much power they can deliver.

Plus, batteries tend to degrade over time, requiring replacement. An alternate energy storage device, the supercapacitor, charges rapidly and generates serious power, which could potentially allow electric cars to accelerate more quickly, among other applications.

Plus, supercapacitors store energy electrostatically, not chemically, which makes them more stable and long-lasting than many batteries. But today's commercially available supercapacitors require binders and have low energy density, limiting their application in emerging go-anywhere electronics.

Wang, a graduate student in the lab of Stoyan Smoukov, Ph.D., at the University of Cambridge (U.K.) suspected that a flexible conducting polymer-based material from another project they were working on could be a better alternative.

Conducting polymers, such as poly(3,4-ethylenedioxythiophene) (PEDOT), are candidate supercapacitors that have advantages over traditional carbon-based supercapacitors as charge storage materials. They are pseudocapacitive, meaning they allow reversible electrochemical reactions, and they also are chemically stable and inexpensive. However, ions can only penetrate the polymers a couple of nanometers deep, leaving much of the material as dead weight.

Scientists working to improve ion mobility had previously developed nanostructures that deposit thin layers of conducting polymers on top of support materials, which improves supercapacitor performance by making more of the polymer accessible to the ions. The drawback, according to Wang, is that these nanostructures can be fragile, difficult to make reproducibly when scaled-up and poor in electrochemical stability, limiting their applicability.

So, Smoukov and Wang developed a more robust material by weaving together a conducting polymer with an ion-storage polymer. The two polymers were stitched together to form a candy cane-like geometry, with one polymer playing the role of the white stripe and the other, red. While PEDOT conducts electricity, the other polymer, poly(ethylene oxide) (PEO), can store ions.

The interwoven geometry is instrumental to the energy storage benefits, Wang says, because it allows the ions to access more of the material overall, approaching the "theoretical limit."

When tested, the candy cane supercapacitor demonstrated improvements over PEDOT alone with regard to flexibility and cycling stability. It also had nearly double the specific capacitance compared to conventional PEDOT-based supercapacitors.

Still, there's room for improvement, Smoukov says. "In future experiments, we will be substituting polyaniline for PEDOT to increase the capacitance," he says.

"Polyaniline, because it can store more charge per unit of mass, could potentially store three times as much electricity as PEDOT for a given weight."

That means lighter batteries with the same energy storage can be charged faster, which is an important consideration in the development of novel wearables, robots and other devices.

"Candy cane-like semi-interpenetrating polymer networks for enhanced fast-charging power source of electronics"


Related Links
American Chemical Society
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Large single-crystal graphene could advance scalable 2-D materials
Oak Ridge TN (SPX) Apr 13, 2018
A new method to produce large, monolayer single-crystal-like graphene films more than a foot long relies on harnessing a "survival of the fittest" competition among crystals. The novel technique, developed by a team led by the Department of Energy's Oak Ridge National Laboratory, may open new opportunities for growing the high-quality two-dimensional materials necessary for long-awaited practical applications. Making thin layers of graphene and other 2D materials on a scale required for research p ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Japan 'rare earth' haul sparks hopes of cutting China reliance

'Everything-repellent' coating could kidproof phones, homes

Swansea scientists discover greener way of making plastics

Large single-crystal graphene could advance scalable 2-D materials

TECH SPACE
India Struggling to Establish Lost Link With Crucial Communication Satellite

Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India set to launch S-Band satellite for military communications

TECH SPACE
TECH SPACE
DT Research introduces new rugged tablet with scientific-grade GNSS

China sends twin BeiDou-3 navigation satellites into space

Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

TECH SPACE
Airbus aiming to step up A320neo production

Boeing tapped to support P-8A Poseidon training

L3 wins Navy contract for fighter aircraft support

Fierce clashes as French police try to clear anti-capitalist camp

TECH SPACE
The thermodynamics of computing

Polarization has strong impact on electrons, study shows

Wiggling atoms switch the electric polarization of crystals

Diamond-based circuits can take the heat for advanced applications

TECH SPACE
China launches Yaogan-31 remote sensing satellites

Swarm tracks elusive ocean magnetism

New source of global nitrogen discovered: Earth's bedrock

Denmark Hopeful to 'Enter Superliga' With Recent Space Project

TECH SPACE
Swamp microbe has pollution-munching power

World shipping industry agrees to halve carbon emissions by 2050

Trouble in Paradise: Tourism surge lashes Southeast Asia's beaches

French startup Plume out to crowd-source air quality









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.