Space Industry and Business News  
TIME AND SPACE
CID-42: A Black Hole 'Slingshot'

Credits: X-ray: NASA/CXC/SAO/F.Civano et al. Optical: NASA/STScI
by Staff Writers
Washington DC (SPX) Jul 02, 2010
Evidence for a recoiling black hole has been found using data from the Chandra X-ray Observatory, XMM-Newton, the Hubble Space Telescope (HST), and several ground-based telescopes. This black hole kickback was caused either by a slingshot effect produced in a triple black hole system, or from the effects of gravitational waves produced after two supermassive black holes merged a few million years earlier.

The discovery of this object, located in this composite image, comes from a large, multi-wavelength survey, known as the Cosmic Evolution Survey (COSMOS).

This survey includes data from Chandra, HST, XMM- Newton, as well as ground-based observatories. Of the 2,600 X-ray sources found in COSMOS, only one - named CID-42 and located in a galaxy about 3.9 billion light years away - coincides with two very close, compact optical sources (The two sources are seen in the HST data, but they are too close for Chandra to resolve separately.) In this image, the X-ray source detected by Chandra is colored blue, while the Hubble data are seen in gold.

The galaxy's long tail suggests that a merger between galaxies has occurred relatively recently, only a few million years earlier. Data from the Very Large Telescope and the Magellan telescope give evidence that the difference in speed of the two optical sources is at least three million miles an hour.

The X-ray spectra from Chandra and XMM-Newton provide extra information about CID-42. Absorption from iron-rich gas shows that gas is moving rapidly away from us in the rest frame of the galaxy. This could be gas in the galaxy between us and one of the black holes that is falling into the black hole, or it could be gas on the far side of the black hole that is blowing away.

Taken together, these pieces of information allow for two different scenarios for what is happening in this system. In the first scenario, the researchers surmise that a triple black hole encounter was produced by a two-step process. First, a collision between two galaxies created a galaxy with a pair of black holes in a close orbit.

Before these black holes could merge, another galaxy collision occurred, and another supermassive black hole spiraled toward the existing black hole pair.

The interaction among the three black holes resulted in the lightest one being ejected. In this case, the optical source in the lower left of the image is an active galactic nucleus (AGN) powered by material being pulled along by, and falling onto, the escaping supermassive black hole.

The source in the upper right is an AGN containing the black hole that resulted from a merger between the two remaining black holes.

In this slingshot scenario, the high-speed X-ray absorption can be explained as a high-speed wind blowing away from the AGN in the upper right that absorbs light from the AGN in the lower left.

Based on its optical spectrum, the AGN in the upper right is thought to be obscured by a torus of dust and gas. In nearly all cases a wind from such an AGN would be undetectable, but here it is illuminated by the other AGN, giving the first evidence that fast winds exist in obscured AGN.

An alternative explanation posits a merger between two supermassive black holes in the center of the galaxy. The asymmetry of the gravitational waves emitted in this process caused the merged black hole to be kicked away from the center of the galaxy.

In this scenario, the ejected black hole is the point source in the lower left and a cluster of stars left behind in the center of the galaxy is in the upper right. The observed X-ray absorption would be caused by gas falling onto the recoiling black hole.

Future observations may help eliminate or further support one of these scenarios. A team of researchers led by Francesca Civano and Martin Elvis of the Harvard-Smithsonian Center for Astrophysics (CfA) will publish their work on CID-42 in the July 1st edition of The Astrophysical Journal.

The second scenario, concerning the recoil of a supermassive black hole caused by a gravitational wave kick, has recently been proposed by Peter Jonker from the Netherlands Institute for Space Research in Utrecht as a possible explanation for a source in a different galaxy.

In this study, led by Peter Jonker from the Netherlands Institute for Space Research in Utrecht, a Chandra X-ray source was discovered about ten thousand light years, in projection, away from the center of a galaxy. Three possible explanations for this object are that it is an unusual type of supernova, or an ultraluminous X- ray source with a very bright optical counterpart or a recoiling supermassive black hole resulting from a gravitational wave kick.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Chandra X-ray Observatory
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TIME AND SPACE
Massive Black Holes 'Switch On' In Galaxy Collisions
Bonn, Germany (SPX) Jun 17, 2010
The center of most galaxies harbors a massive black hole. So does our Milky Way - the exotic object there however is pretty calm, unlike some supermassive gravity monsters in other galaxies. Scientists at the Max Planck Institute for Extraterrestrial Physics and other institutions around the world have now analyzed 199 of these galaxies and discovered what makes the black holes at the galaxy cen ... read more







TIME AND SPACE
Apple to issue patch for iPhone 4 antenna woes

Apple hit with lawsuit over iPhone 4 antenna woes

New Multi-Year LTA With EADS Astrium To Power All GEO Satellites

Google News revamped to get more personal

TIME AND SPACE
Directional Network System For US Fleet Forces Command

VoIP Phones For Defense Manufacturers And Militaries Worldwide

WIN-T Team Completes Design Milestone For Key Subsystem

Thales Australia wins ship SATCOM contract

TIME AND SPACE
Orbital Rockets Selected To Launch Two NASA Scientific Satellites

Arianespace To Launch Argentine Satellite Arsat-1

Six Astrium Satellites Launched In A Month

Ariane rocket places two satellites into orbit

TIME AND SPACE
Skyhook Wireless Partners With Samsung Electronics For Leading Location System

Telogis Expands Reach Into Construction And Heavy Lifting Sectors

Global Number Of Traffic Information Users To Exceed 370 Million By 2015

Carrier Corp. Greens Commercial Vehicle Fleet

TIME AND SPACE
Australia upgrades older F/A-18 Hornets

Boeing And FAA To Team For Cleaner Skies And Quieter Airplanes

Technology-loving Virgin America goes international

Corruption scandal hits China's aviation sector

TIME AND SPACE
Lawrence Livermore Teams With Fusion-io To Re-define Performance Densi

Toshiba announces 128 GB chip for smart phones, tablet PCs

Walls Falling Faster For Solid-State Memory

Northrop Grumman Doubles Frequency Of Fastest Reported Integrated Circuit

TIME AND SPACE
CryoSat-2 Exceeding Expectations

NASA's TRMM Satellite Sees Heavy Rainfall In Hurricane Alex

SMOS Shines At Symposium

Russia, Canada Seek Joint Arctic Space Monitoring Project

TIME AND SPACE
Oil spills blight Nigeria's creeks

Louisiana resumes oil spill skimming after Hurricane Alex

Predict "Larger Than Average" Gulf Dead Zone

Why Mercury Is More Dangerous In Oceans


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement