Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Breakthrough optics pave way for new class of intriguing technologies
by Staff Writers
Washington DC (SPX) Aug 19, 2015


File image.

A new class of fascinating technologies - including optics in computing, telecommunications links and switches, and virtually any other optical component - could be created simply by configuring a mesh of light-controlling devices known as interferometers. This is similar to the way electronic semiconductors can fashion the wide array of digital technologies we have at our disposal today.

Optical technologies have the potential to greatly reduce the power consumption of computers, speed telecommunications, and enhance the sensitivity of chemical and biological sensors. The basic building blocks of traditional optics, however, mirrors and lenses, lack the versatility to readily perform these functions and are difficult to scale to the small sizes needed for many applications.

A fundamentally new approach to designing optical technologies - based on a single device known as a Mach-Zehnder interferometer - could overcome these limitations and lead to a variety of breakthrough applications, thus, paving the way for an entirely new class of technologies that could give optics the kind of versatility we see in electronics.

"Recently, optical researchers have begun to understand that these interferometers can be thought of as universal 'building blocks' that could enable us to construct essentially any optical device we could imagine," said Dr. David A.B. Miller, Stanford University, California, USA and author of a letter describing the potential of interferometers published today in The Optical Society's new high-impact journal Optica.

Previously, this approach would have only been feasible if the Mach-Zehnder interferometers were able to achieve perfect performance - a seemingly unattainable goal.

The new approached described in this paper, however, presents an alternate pathway. Rather than engineering a perfect, single component, researchers propose it's possible to create a mesh, or array, of interferometers that, when properly programmed, could compensate for its less-than-perfect parts and deliver overall perfect performance.

"It's this larger scheme that allows us to use reasonable but imperfect versions of these components," explains Miller.

Interferometers Building the Foundation of Technology
Interferometers are basically any device that separate and re-combine light waves. Like sound waves, light waves can be combined so their signals add together. They also can "interfere" and cancel each other out. This basic "on/off" capability is what would allow interferometers to be harnessed and configured in a variety of ways.

Mach-Zehnder interferometers are specialized versions of these devices that split light from one or two sources into two new beams and then recombine them. They are already used for some specific applications in science and for switching beams in optical communications in optical fibers.

Their more general use in consumer and other applications, however, has been obstructed because of the way that the light is initially split as it enters the device. Ideally, the beams would be split in perfect 50/50 symmetry. In reality, however, the split is not nearly so perfect. This means that when the interferometer recombines the signal it cannot be completely canceled, preventing engineers from completely controlling the optical path.

The ability to combine or cancel the signals along a particular path is critical for technology. Researchers realized, however, that if Mach-Zehnder interferometers could be assembled in large meshes and controlled, it would be possible to create a system that achieved the necessary perfect performance. This would allow the meshes to, in principle, perform any so-called "linear" optical operation, much like computers are able to perform any logical application by controlling on/off functions of semiconductors.

Automatic Control Enables Technology
The final element that enabled this process was the invention of algorithms - essentially the control software - that allowed the meshes to be "self-configuring," adjusting how they directed the light paths based on the signal received by simple optical sensors embedded in the system.

This self-correcting algorithm allowed the researchers to propose meshes of interferometers with some imperfections and then compensate to make them behave as if they were perfect. The algorithms could then control the "phase shifters" in the interferometers, determining if the signals combined or canceled, by simply monitoring the optical power in various detectors.

"With this development, we are starting to do some things in optics that we have been doing in electronics for some time," observed Miller. "By using small amounts of electronics and novel algorithms, we can greatly expand the kinds of optics and applications by making completely custom optical devices that will actually work."

Paper: "Perfect optics with imperfect components," David A.B. Miller, Optica, Vol. 2, Issue 8, pp. 747 (2015). doi:


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Optical Society
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
Dancing droplets launch themselves from thin fibers
Durham NC (SPX) Aug 19, 2015
We've all seen dewdrops form on spider webs. But what if they flung themselves off of the strands instead? Researchers at Duke University and the University of British Columbia have now observed this peculiar phenomenon, which could benefit many industrial applications. As long as the strands are moderately hydrophobic and relatively thin, small droplets combining into one are apt to dance thems ... read more


TECH SPACE
The unbearable lightness of helium may not be such a problem after all

Laser-burned graphene gains metallic powers

Small, cheap femtosecond laser for industry available

Hydrogen sulfide loses its electrical resistance under high pressure at -70C

TECH SPACE
Harris delivers Falcon tactical radios

DLS providing equipment for networked communications

Army funds testing of upgrade to communications system

General Dynamics delivering more digital modular radios to Navy

TECH SPACE
Countdown for Indian rocket GSLV launch to begin on August 26

ARSAT-2 arrives in French Guiana

Success for 2 long-time Arianespace customers: Eutelsat and Intelsat

AAC and Garvey Spacecraft Deliver First Rocket Motor to Kodiak

TECH SPACE
Russian Defense Ministry to use updated GLONASS GPS by 2016

Nicaragua to Host Russian GPS-Equivalent Ground Stations

Alibaba joins China arms maker to offer location services

Beidou satellites begin autonomous operation in space

TECH SPACE
Russian Helicopters to Unveil Advanced High-Speed Chopper

Russian E-Warriors Render Aircraft Carriers Useless

Navy orders more RF-jammers for its F/A-18s

China needs more than 6,300 new planes by 2034: Boeing

TECH SPACE
'Quantum dot' technology may help light the future

SK Hynix to invest $38 billion over 10 years

Designer circuits that do more with less power

A thin ribbon of flexible electronics can monitor health, infrastructure

TECH SPACE
Russia to Develop Earth Remote-Sensing Satellite System for Iran

Sentinel-1A watching Jakobshavn glacier in action

Putting NASA Earth Data to Work

Sentinels catch river traffic jam

TECH SPACE
Lebanon cabinet fails on trash crisis deal after demos

War in the Mid East curse on humanity, boon for clean air

Lebanese press demands as trash crisis exposes frustrations

Better dsinfecting of spinach, salad greens would reduce illness




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.