Space Industry and Business News  
SOLAR SCIENCE
Breakthrough method for predicting solar storms
by Staff Writers
Lund, Sweden (SPX) Jul 30, 2020

file illustration only

Extensive power outages and satellite blackouts that affect air travel and the internet are some of the potential consequences of massive solar storms. These storms are believed to be caused by the release of enormous amounts of stored magnetic energy due to changes in the magnetic field of the sun's outer atmosphere - something that until now has eluded scientists' direct measurement. Researchers believe this recent discovery could lead to better "space weather" forecasts in the future.

"We are becoming increasingly dependent on space-based systems that are sensitive to space weather. Earth-based networks and the electrical grid can be severely damaged if there is a large eruption", says Tomas Brage, Professor of Mathematical Physics at Lund University in Sweden.

Solar flares are bursts of radiation and charged particles, and can cause geomagnetic storms on Earth if they are large enough. Currently, researchers focus on sunspots on the surface of the sun to predict possible eruptions. Another and more direct indication of increased solar activity would be changes in the much weaker magnetic field of the outer solar atmosphere - the so-called Corona.

However, no direct measurement of the actual magnetic fields of the Corona has been possible so far.

"If we are able to continuously monitor these fields, we will be able to develop a method that can be likened to meteorology for space weather. This would provide vital information for our society which is so dependent on high-tech systems in our everyday lives", says Dr Ran Si, post-doc in this joint effort by Lund and Fudan Universities.

The method involves what could be labelled a quantum-mechanical interference. Since basically all information about the sun reaches us through "light" sent out by ions in its atmosphere, the magnetic fields must be detected by measuring their influence on these ions.

But the internal magnetic fields of ions are enormous - hundreds or thousands of times stronger than the fields humans can generate even in their most advanced labs. Therefore, the weak coronal fields will leave basically no trace, unless we can rely on this very delicate effect - the interference between two "constellations" of the electrons in the ion that are close - very close - in energy.

The breakthrough for the research team was to predict and analyze this "needle in the haystack" in an ion (nine times ionized iron) that is very common in the corona.

The work is based on state-of-the art calculations performed in the Mathematical Physics division of Lund University and combined with experiments using a device that could be thought of as being able to produce and capture small parts of the solar corona - the Electron Beam Ion Trap, EBIT, in Professor Roger Hutton's group in Fudan University in Shanghai.

"That we managed to find a way of measuring the relatively weak magnetic fields found in the outer layer of the sun is a fantastic breakthrough", concludes Tomas Brage.

Research paper


Related Links
Lund University
Solar Science News at SpaceDaily


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR SCIENCE
New studies reveal inside of central energy release region in solar eruption
Beijing, China (SPX) Jul 29, 2020
Prof. LIN Jun from the Yunnan Observatories of Chinese Academy of Sciences, collaborating with Prof. CHEN Bin from the New Jersey Institute of Technology, conducted the radio observation of the magnetic field distribution and relativistic electron acceleration characteristics in the current sheet of solar flares. The related research results were published in the journal Nature Astronomy on July 27, 2020. Solar eruption is the most violent energy release process in the solar system, which is ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Texas firm develops adaptable satellites with fast software upgrades

Spaceflight Inc chooses Tethers Unlimited's Terminator Tape to deorbit of Orbit Transfer Vehicle

Battelle Energy Alliance seeks industry partners to design nuclear power system for Moon

Scientists discover how deep-sea, ultra-black fish disappear

SOLAR SCIENCE
South Korea's first military satellite launched

Alion to provide support to USAF for spectrum management

SpaceX launches South Korean communications satellite

Airbus signs contract with UK Ministry of Defence for Skynet 6A satellite

SOLAR SCIENCE
SOLAR SCIENCE
BeiDou adopted in unmanned farm machines in Xinjiang

Garmin says systems back online after cyber attack

Garmin says outage continues but user data 'not affected'

Honeywell expands navigation options for precise data in areas without GPS

SOLAR SCIENCE
NASA Mission Will Study the Cosmos With a Stratospheric Balloon

First French fighter jets head to India after purchase

Chinese airlines offer unlimited flights to revive industry

DARPA awards contracts for new X-Plane program based on active flow control

SOLAR SCIENCE
Share surge propels Taiwan chip giant TSMC into top ten

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

A new path for electron optics in solid-state systems

Dutch chip tech maker ASML resists virus to post growth

SOLAR SCIENCE
China's newly-launched satellite to boost surveying, mapping capabilities

China launches new Earth-observation remote-sensing satellite

Reduction in commercial flights due to COVID-19 leading to less accurate weather forecasts

Decadal predictability of North Atlantic blocking and the NAO

SOLAR SCIENCE
Air pollution 'greatest risk' to global life expectancy

Record 212 environmental activists murdered in 2019: NGO

Sri Lanka court blocks president's sand mining concessions

Trump's EPA not changing ozone standards set by Obama administration









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.