Space Industry and Business News
STELLAR CHEMISTRY
Breakthrough in photonic time crystals may transform light control technologies
"This work could lead to the first experimental realization of photonic time crystals, propelling them into practical applications and potentially transforming industries," says Professor Viktar Asadchy from Aalto University, Finland.
Breakthrough in photonic time crystals may transform light control technologies
by Robert Schreiber
Berlin, Germany (SPX) Nov 13, 2024

An international team of researchers has achieved a significant milestone by designing practical photonic time crystals-unique materials capable of exponentially amplifying light. This advancement paves the way for new opportunities in fields such as communications, imaging, and sensing, promising faster and more compact optical devices, including lasers and sensors.

"This work could lead to the first experimental realization of photonic time crystals, propelling them into practical applications and potentially transforming industries. From high-efficiency light amplifiers and advanced sensors to innovative laser technologies, this research challenges the boundaries of how we can control the light-matter interaction," said Assistant Professor Viktar Asadchy from Aalto University, Finland.

Photonic time crystals are a special class of materials with properties distinct from conventional optical crystals. While traditional crystals repeat in spatial patterns, photonic time crystals remain spatially uniform but change periodically in time. This periodicity creates "momentum band gaps," unique states where light essentially halts within the crystal and its intensity increases over time. To illustrate this interaction, imagine light passing through a medium that alternates between air and water at incredible speeds-on the order of quadrillions of times per second-a phenomenon that redefines conventional optics.

These properties of photonic time crystals present significant potential in nanoscale sensing.

"Imagine we want to detect the presence of a small particle, such as a virus, pollutant, or biomarker for diseases like cancer. When excited, the particle would emit a tiny amount of light at a specific wavelength. A photonic time crystal can capture this light and automatically amplify it, enabling more efficient detection with existing equipment," explained Asadchy.

Creating photonic time crystals for visible light has posed challenges due to the need for extremely fast yet substantial shifts in material properties. Previously, the most advanced experiments in photonic time crystals were limited to lower-frequency ranges such as microwaves. Now, through theoretical models and electromagnetic simulations, the research team has proposed a feasible method to create true optical photonic time crystals. By arranging tiny silicon spheres in a specific pattern, they predict that the conditions required for light amplification can now be achieved in laboratory settings using established optical techniques.

Research Report:Expanding momentum bandgaps in photonic time crystals through resonances

Related Links
Aalto University
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
Ultra-compact spectrometer offers the capabilities of much larger devices
Los Angeles CA (SPX) Oct 24, 2024
Spectrometers, which analyze light by breaking it down into different spectra, have a long history dating back to the 17th century. Now, UC Santa Cruz researchers are pioneering ultra-compact versions of these devices that maintain powerful performance at a fraction of the size, paving the way for applications in fields ranging from disease detection to space observation. Not only are these devices highly effective, but they are also inexpensive to produce and can be c ... read more

STELLAR CHEMISTRY
Dating apps move to friend zone in search of profits

MIT engineers make converting CO2 into useful products more practical

Carbon recycling offers solution to plastic pollution

Startup turns mining waste into critical metals for the U.S.

STELLAR CHEMISTRY
Japan launches H3 rocket with defense satellite to boost secure communications

Australia axes $7bn military satellite project

SpaceRISE Wins EU Contract to Build and Operate IRIS2 Satellite Network

Gilat secures $5M in US Defense SATCOM orders

STELLAR CHEMISTRY
STELLAR CHEMISTRY
N. Korea jams GPS signals, affecting ships, aircraft in South

Successful demo showcases BAE Systems' next-gen M-Code GNSS technology

BeiDou remote sensing experiment enhances ecological monitoring in Yellow River

Aerodata earns EASA certification for GPS anti-jamming and anti-spoofing tech

STELLAR CHEMISTRY
Flights to Bali resume following volcanic eruption

NASA funds new studies looking at future of sustainable aircraft

Electra unveils EL9 ultra short hybrid-electric aircraft design

Airlines around Asia ground Bali flights after volcano erupts

STELLAR CHEMISTRY
China's top chipmaker reports surge in profits

Nvidia surpasses Apple as world's biggest company

Nvidia asks S Korea SK hynix to pull forward chip deliveries

NRL Develops Innovative Method for Quantum Emitter Control

STELLAR CHEMISTRY
China launches new set of remote-sensing satellites

Microplastics influence cloud formation, potentially shaping weather and climate

UChicago scientist crafts new model to enhance forecasting of atmospheric rivers

Satellite imagery offers a way to shield coastal forests from climate impacts

STELLAR CHEMISTRY
Toxic smog smothering India's capital smashes WHO limit

Pakistan's record smog triggers anguish and anxiety

Trump picks ex-lawmaker Lee Zeldin to head EPA

Pakistan's record smog triggers anguish and anxiety

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.