Space Industry and Business News  
STELLAR CHEMISTRY
Boundary of heliosphere mapped for the first time
by Staff Writers
Los Alamos NM (SPX) Jun 15, 2021

The first three-dimensional map of the boundary between our solar system and interstellar space - a region known as the heliopause.

For the first time, the boundary of the heliosphere has been mapped, giving scientists a better understanding of how solar and interstellar winds interact.

"Physics models have theorized this boundary for years," said Dan Reisenfeld, a scientist at Los Alamos National Laboratory and lead author on the paper, which was published in the Astrophysical Journal today. "But this is the first time we've actually been able to measure it and make a three-dimensional map of it."

The heliosphere is a bubble created by the solar wind, a stream of mostly protons, electrons, and alpha particles that extends from the Sun into interstellar space and protects the Earth from harmful interstellar radiation.

Reisenfeld and a team of other scientists used data from NASA's Earth-orbiting Interstellar Boundary Explorer (IBEX) satellite, which detects particles that come from the heliosheath, the boundary layer between the solar system and interstellar space.

The team was able to map the edge of this zone -a region called the heliopause. Here, the solar wind, which pushes out toward interstellar space, collides with the interstellar wind, which pushes in towards the Sun.

To do this measurement, they used a technique similar to how bats use sonar. "Just as bats send out sonar pulses in every direction and use the return signal to create a mental map of their surroundings, we used the Sun's solar wind, which goes out in all directions, to create a map of the heliosphere," said Reisenfeld.

They did this by using IBEX satellite's measurement of energetic neutral atoms (ENAs) that result from collisions between solar wind particles and those from the interstellar wind. The intensity of that signal depends on the intensity of the solar wind that strikes the heliosheath. When a wave hits the sheath, the ENA count goes up and IBEX can detect it.

"The solar wind 'signal' sent out by the Sun varies in strength, forming a unique pattern," explained Reisenfeld. "IBEX will see that same pattern in the returning ENA signal, two to six years later, depending on ENA energy and the direction IBEX is looking through the heliosphere. This time difference is how we found the distance to the ENA-source region in a particular direction."

They then applied this method to build the three-dimensional map, using data collected over a complete solar cycle, from 2009 through 2019.

"In doing this, we are able to see the boundary of the heliosphere in the same way a bat uses sonar to 'see' the walls of a cave," he added.

The reason it takes so long for the signal to return to IBEX is because of the vast distances involved. Distances in the solar system are measured in astronomical units (AU) where 1 AU is the distance from the Earth to the Sun.

Reisenfeld's map shows that the minimum distance from the Sun to the heliopause is about 120 AU in the direction facing the interstellar wind, and in the opposite direction, it extends at least 350 AU, which is the distance limit of the sounding technique. For reference, the orbit of Neptune is about 60 AU across.

Research paper


Related Links
Los Alamos National Laboratory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Astronomers spot a 'blinking giant' near the centre of the Galaxy
Cambridge UK (SPX) Jun 14, 2021
Astronomers have spotted a giant 'blinking' star towards the centre of the Milky Way, more than 25,000 light years away. An international team of astronomers observed the star, VVV-WIT-08, decreasing in brightness by a factor of 30, so that it nearly disappeared from the sky. While many stars change in brightness because they pulsate or are eclipsed by another star in a binary system, it's exceptionally rare for a star to become fainter over a period of several months and then brighten again. The ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
G7 nations commit to the safe and sustainable use of space

Space sustainability rating to shine light on debris problem

Compact quantum computer for server centers

Meringue-like material could make aircraft as quiet as a hairdryer

STELLAR CHEMISTRY
Filtering out interference for next-generation wideband arrays

ESA helps Europe boost secure connectivity

Isotropic Systems and SES GS complete trials for of new connectivity for US Military

Quantum communication in space moves ahead

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Lockheed Martin-Built Next Generation GPS III Satellite Propels Itself to Orbit

Orolia's GNSS Simulators now support an ultra-low latency of five milliseconds

GMV at the core of the Galileo High Accuracy Service

Galileo satellites' last step before launch

STELLAR CHEMISTRY
B-52H bombers fly over the Arctic from Spain to Louisiana

Space tourism startup flies test balloon 20 miles high over Florida

Development of warfighter decision-making program centers on Nellis AFB, Nev.

Creating "digital twins" at scale

STELLAR CHEMISTRY
Germany eyes technological leap with first quantum computer

Researchers tame silicon to interact with light for next-generation microelectronics

New family of atomic-thin electride materials discovered

Atom swapping could lead to ultra-bright, flexible next generation LEDs

STELLAR CHEMISTRY
Orbital Sidekick announces upcoming launch of its most powerful satellite: Aurora

Edgybees Selected to Participate in Inaugural AWS Space Accelerator for Startups

Ozone pollution in Antarctica has risen steadily over last 25 years

Earth from Space: Chongqing, China

STELLAR CHEMISTRY
Wildlife deaths blamed on ship disaster mount in Sri Lanka

Diving into the global problem of technology waste

Sri Lanka arrests captain over ship fire pollution

Ocean microplastics: First global view shows seasonal changes and sources









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.