Space Industry and Business News  
TECH SPACE
Bio-inspired materials decrease drag for liquids
by Staff Writers
Thuwal, Saudi Arabia (SPX) Sep 11, 2018

Materials could be engineered to repel liquids without coatings when carved with a bio-inspired microtexture.

An eco-friendly coating-free strategy has now been developed to make solid surfaces liquid repellent, which is crucial for the transportation of large quantities of liquids through pipes.

Researchers from KAUST's Water Desalination and Reuse Center have engineered nature-inspired surfaces that help to decrease frictional drag at the interface between liquid and pipe surface.

Piping networks are ubiquitous to many industrial processes ranging from the transport of crude and refined petroleum to irrigation and water desalination. However, frictional drag at the liquid-solid interface reduces the efficiency of these processes.

Conventional methods to reduce drag rely solely on chemical coatings, which generally consist of perfluorinated compounds. When applied to rough surfaces, these coatings tend to trap air at the liquid-solid interface, which reduces contact between the liquid and the solid surface. Consequently this enhances the surface omniphobicity, or ability to repel both water- and oil-based liquids.

"But if the coatings get damaged, then you are in trouble," says team leader, Himanshu Mishra, noting that coatings breakdown under abrasive and elevated temperature conditions.

So Mishra's team developed microtextured surfaces that do not require coatings to trap air when immersed in wetting liquids by imitating the omniphobic skins of springtails, or Collembola, which are insect-like organisms found in moist soils. The researchers worked at the KAUST Nanofabrication Core Laboratory to carve arrays of microscopic cavities with mushroom-shaped edges, called doubly reentrant (DRC), on smooth silica surfaces.

"Through the DRC architecture, we could entrap air under wetting liquids for extended periods without using coatings," says co-author Sankara Arunachalam. Unlike simple cylindrical cavities, which were filled in less than 0.1 seconds on immersion in the solvent hexadecane, the biomimetic cavities retained the trapped air beyond 10,000,000 seconds.

To learn more about the long-term entrapment of air, the researchers systematically compared the wetting behavior of circular, square, and hexagonal DRCs. They found that circular DRCs were the best at sustaining the trapped air.

The researchers also discovered that the vapor pressure of the liquids influences this entrapment. For low-vapor pressure liquids, such as hexadecane, the trapped gas was intact for months. For liquids with higher vapor pressure, such as water, capillary condensation inside the cavities disrupted long-term entrapment.

Using these design principles, Mishra's team is exploring scalable approaches to generate mushroom-shaped cavities on to inexpensive materials, such as polyethylene terephthalate, for frictional drag reduction and desalination. "This work has opened several exciting avenues for fundamental and applied research!" Mishra concludes.

Research paper


Related Links
King Abdullah University of Science and Technology (KAUST)
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
All that is gold is not biochemically stable
Durham NC (SPX) Sep 04, 2018
It turns out gold isn't always the shining example of a biologically stable material that it's assumed to be, according to environmental engineers at Duke's Center for the Environmental Implications of NanoTechnology (CEINT). In a nanoparticle form, the normally very stable, inert, noble metal actually gets dismantled by a microbe found on a Brazilian aquatic weed. While the findings don't provide dire warnings about any unknown toxic effects of gold, they do provide a warning to researchers ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Raytheon receives contract for Zumwalt radars

Satellites more at risk from fast solar wind than a major space storm

Facebook to build $1 bn Singapore data centre, first in Asia

At last, a simple 3D printer for metal

TECH SPACE
Marine Corps Embraces High-Throughput Satellites to Complete Military Operations

A Flexible Modem Interface to Enable Roaming Across Multiple Satellite Platforms

US Marines test laser communication system to beat radio jammers

Northrop Grumman, DARPA test 100 gigabit transmissions

TECH SPACE
TECH SPACE
Antenova offers ultra-small GNSS active antenna module for difficult locations

UK plans own satellite system after Galileo exclusion

Space sector to benefit from multi-million pound work on UK alternative to Galileo

US Air Force's first advanced GPS 3 satellite shipped to Cape Canaveral

TECH SPACE
Touchdown! NASA's Football Stadium-sized Scientific Balloon Takes Flight

Air Force, Army conduct joint personnel, supply drop exercise

Boeing receives contract for F-15 Eagle targeting pods

Air Force awards contract to M1 for T-38 maintenance

TECH SPACE
Yale researchers 'teleport' a quantum gate

Quantum gates between atoms and photons will scale up quantum computers

Scientists predict superelastic properties in a group of iron-based superconductors

New molecular wires for single-molecule electronic devices

TECH SPACE
PlanetWatchers Announces Breakthrough SAR Analytics Platform

How scientists are tracking Florida's red tides with satellites and smartphones

Aeolus laser shines light on wind

Ocean satellite Sentinel-6A beginning to take shape

TECH SPACE
New construction boom threatens Spanish coastline

Carlsberg cans plastic rings to cut waste

Engineered sand zaps storm water pollutants

The fate of plastic in the oceans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.