Space Industry and Business News  
NANO TECH
Berkeley Lab Researchers Report Tandem Catalysis In Nanocrystal Interfaces

In a unique new bilayer nanocatalyst system, single layers of metal and metal oxide nanocubes are deposited to create two distinct metal-metal oxide interfaces that allow for multiple, sequential catalytic reactions to be carried out selectively and in tandem. (Image courtesy of Yang group)
by Staff Writers
Berkeley CA (SPX) Apr 13, 2011
In a development that holds intriguing possibilities for the future of industrial catalysis, as well as for such promising clean green energy technologies as artificial photosynthesis, researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have created bilayered nanocrystals of ametal-metal oxide that are the first to feature multiple catalytic sites on nanocrystal interfaces.

These multiple catalytic sites allow for multiple, sequential catalytic reactions to be carried out selectively and in tandem.

"The demonstration of rationally designed and assembled nanocrystal bilayers with multiple built-in metal-metal oxide interfaces for tandem catalysis represents a powerful new approach towards designing high-performance, multifunctional nanostructured catalysts for multiple-step chemical reactions," says the leader of this research Peidong Yang, a chemist who holds joint appointments with Berkeley Lab's Materials Sciences Division, and the University of California Berkeley's Chemistry Department and Department of Materials Science and Engineering.

Catalysts - substances that speed up the rates of chemical reactions without themselves being chemically changed - are used to initiate virtually every industrial manufacturing process that involves chemistry. Metal catalysts have been the traditional workhorses, but in recent years, with the advent of nano-sized catalysts, metal,oxide and their interface have surged in importance.

"High-performance metal-oxide nanocatalysts are central to the development of new-generation energy conversion and storage technologies," Yang says. "However, to significantly improve our capability of designing better catalysts, new concepts for the rational design and assembly of metal-metal oxide interfaces are needed."

Studies in recent years have shown that for nanocrystals, the size and shape - specifically surface faceting with well-defined atomic arrangements - can have an enormous impact on catalytic properties.

This makes it easier to optimize nanocrystal catalysts for activity and selectivity than bulk-sized catalysts. Shape- and size-controlled metal oxide nanocrystal catalysts have shown particular promise.

"It is well-known that catalysis can be modulated by using different metal oxide supports, or metal oxide supports with different crystal surfaces," Yang says.

"Precise selection and control of metal-metal oxide interfaces in nanocrystals should therefore yield better activity and selectivity for a desired reaction."

To determine whether the integration of two types of metal oxide interfaces on the surface of a single active metal nanocrystal could yield a novel tandem catalyst for multistep reactions, Yang and his coauthors used the Lamgnuir-Blodgett assembly technique to deposit nanocube monolayers of platinum and cerium oxide on a silica (silicon dioxide) substrate.

The nanocube layers were each less than 10 nanometers thick and stacked one on top of the other to create two distinct metal-metal oxide interfaces - platinum-silica and cerium oxide-platinum. These two interfaces were then used to catalyze two separate and sequential reactions.

First, the cerium oxide-platinum interface catalyzed methanol to produce carbon monoxide and hydrogen. These products then underwent ethylene hydroformylation through a reaction catalyzed by the platinum-silica interface. The final result of this tandem catalysis was propanal.

"The cubic shape of the nanocrystal layers is ideal for assembling metal-metal oxide interfaces with large contact areas," Yang says.

"Integrating binary nanocrystals to form highly ordered superlattices is a new and highly effective way to form multiple interfaces with new functionalities."

Yang says that the concept of tandem catalysis through multiple interface design that he and his co-authors have developed should be especially valuable for applications in which multiple sequential reactions are required to produce chemicals in a highly active and selective manner.

A prime example is artificial photosynthesis, the effort to capture energy from the sun and transform it into electricity or chemical fuels.

To this end, Yang leads the Berkeley component of the Joint Center for Artificial Photosynthesis, a new Energy Innovation Hub created by the U.S. Department of Energy that partners Berkeley Lab with the California Institute of Technology (Caltech).

"Artificial photosynthesis typically involves multiple chemical reactions in a sequential manner, including, for example, water reduction and oxidation, and carbon dioxide reduction," says Yang.

"Our tandem catalysis approach should also be relevant to photoelectrochemical reactions, such as solar water splitting, again where sequential, multiple reaction steps are necessary. For this, however, we will need to explore new metal oxide or other semiconductor supports, such as titanium dioxide, in our catalyst design."

Yang is the corresponding author of a paper describing this research that appears in the journal Nature Chemistry. The paper is titled "Nanocrystal bilayer for tandem catalysis."

Co-authoring the paper were Yusuke Yamada, Chia-Kuang Tsung, Wenyu Huang, Ziyang Huo, Susan Habas, Tetsuro Soejima, Cesar Aliaga and leading authority on catalysis Gabor Somorjai.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Joint Center for Artificial Photosynthesis
Catalysis Research By Gabor Somorjai
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Transmission Lines For Nanofocusing Of Infrared Light
Barcelona, Spain (SPX) Apr 08, 2011
In conventional optical instruments, light cannot be focused to spot sizes smaller than half the wavelength because of diffraction effects. An important approach to beat this diffraction limit is based on optical antennas, their name being an allusion to their radiofrequency counterparts. They have the ability to concentrate (focus) light to tiny spots of nanometer-scale dimensions, which are or ... read more







NANO TECH
Researchers Find Replacement For Rare Material Indium Tin Oxide

Kindle e-reader cheaper with on-screen ads

Winklevoss twins lose Facebook appeal

Apple's iPad to remain top tablet in 2015: Gartner

NANO TECH
Preparations Underway As US Army Gears Up For Large-Scale Network Evaluations

Global Military Communications Market In 2010

Raytheon BBN Technologies To Protect Internet Comms For Military Abroad

Gilat Announces New Military Modem For Robust Tactical Satcom-On-The-Move

NANO TECH
Arianespace Flight VA201: Interruption Of The Countdown

Russia Looks To Grab Half Of World Space Launch Market

Mitsubishi Electric's ST-2 Satellite Arrives In French Guiana

Jugnu Set To Go Into Space In June

NANO TECH
GPS to protect Bulgarian locomotives from fuel thefts

Make Your Satnav Idea A Reality

GPS Study Shows Wolves More Reliant On A Cattle Diet

Galileo Labs: Better Positioning With Concept

NANO TECH
S. Korea preferred bid for Indonesian jet contract

Chinese airlines sign deal to buy 35 Embraer jets

Google's $700 million ITA buy cleared with conditions

Google, Justice Department near deal on ITA: WSJ

NANO TECH
Technique For Letting Brain Talk To Computers Now Tunes In Speech

Japan's stalled chip sector 'to cost $470bn'

Control The Cursor With Power Of Thought

Self-Cooling Observed In Graphene Electronics

NANO TECH
Arctic Ice Gets A Check Up

3-D map of Philippines to help combat disasters

For NASA's Aquarius, Quest For Salt A Global Endeavor

First Consistent Geological Interpretation Of East Africa Rift System

NANO TECH
High Levels Of Toxic Compounds Found On Coasts Of West Africa

EU declares war on plastic litter in Mediterranean

Study reveals cost of nitrogen pollution

Danube Will Solve Hungary's Environmental Disaster


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement