Space Industry and Business News  
STELLAR CHEMISTRY
Beaming with the light of millions of suns
by Staff Writers
Pasadena CA (SPX) Feb 27, 2018

Image of the Whirlpool galaxy, or M51. X-ray light seen by NASA's Chandra X-ray Observatory is shown in purple, and optical light from NASA's Hubble Space Telescope is red, green and blue. The ultraluminous X-ray source, or ULX, in the new Caltech-led study is indicated. Image courtesy NASA/CXC/Caltech/M.Brightman et al.; Optical: NASA/STScI

In the 1980s, researchers began discovering extremely bright sources of X-rays in the outer portions of galaxies, away from the supermassive black holes that dominate their centers. At first, researchers thought these cosmic objects, called ultraluminous X-ray sources, or ULXs, were hefty black holes with more than ten times the mass of the sun. But observations beginning in 2014 from NASA's NuSTAR and other space telescopes are showing that some ULXs, which glow with X-ray light equal in energy to millions of suns, are actually neutron stars - the burnt-out cores of massive stars that exploded. Three such ULXs have been identified as neutron stars so far.

Now, a Caltech-led team using data from NASA's Chandra X-ray Observatory has identified a fourth ULX as being a neutron star - and found new clues about how these objects can shine so brightly.

Neutron stars are extremely dense objects - a teaspoon would weigh about a billion tons, or as much as a mountain. Their gravity pulls surrounding material from companion stars onto them, and as this material is tugged on, it heats up and glows with X-rays. But as the neutron stars "feed" on the matter, there comes a time when the resulting X-ray light pushes the matter away. Astronomers call this point - when the objects cannot accumulate matter any faster and give off any more X-rays - the Eddington limit.

"In the same that we can only eat so much food at a time, there are limits to how fast neutron stars can accrete matter," says Murray Brightman, a postdoctoral scholar at Caltech and lead author of a new report on the findings in Nature Astronomy. "But ULXs are somehow breaking this limit to give off such incredibly bright X-rays, and we don't know why."

In the new study, the researchers looked at a ULX in the Whirlpool galaxy, also known as M51, which lies about 28 million light-years away. They analyzed archival X-ray data taken by Chandra and discovered an unusual dip in the ULX's light spectrum. After ruling out all other possibilities, they figured out that the dip was from a phenomenon called cyclotron resonance scattering, which occurs when charged particles - either positively charged protons or negatively charged electrons - circle around in a magnetic field. Black holes don't have magnetic fields and neutron stars do, so the finding revealed that this particular ULX in M51 had to be a neutron star.

Cyclotron resonance scattering creates telltale signatures in a star's spectrum of light and the presence of these patterns, called cyclotron lines, can provide information about the strength of the star's magnetic field--but only if the cause of the lines, whether it be protons or electrons, is known. The researchers don't have a detailed enough spectrum of the new ULX to say for certain.

"If the cyclotron line is from protons, then we know that these magnetic fields around the neutron star are extremely strong and may in fact be helping to breaking the Eddington limit," says Brightman. Such strong magnetic fields could reduce the pressure from a ULX's X-rays - the pressure that normally pushes away matter - allowing the neutron star to consume more matter than what is typical and shine with the extremely bright X-rays.

If the cyclotron line is from circling electrons, in contrast, then the magnetic field strength around the neutron star would not be exceptionally strong, and thus the field is probably not the reason these stars break the Eddington limit. To further address the mystery, the researchers are planning to acquire more X-ray data on the ULX in M51 and look for more cyclotron lines in other ULXs.

"The discovery that these very bright objects, long thought to be black holes with masses up to 1,000 times that of the sun, are powered by much less massive neutron stars, was a huge scientific surprise," says Fiona Harrison, Caltech's Benjamin M. Rosen Professor of Physics; the Kent and Joyce Kresa Leadership Chair of the Division of Physics, Mathematics and Astronomy; and the principal investigator of the NuSTAR mission. "Now we might actually be getting firm physical clues as to how these small objects can be so mighty."

The Nature Astronomy study, titled "Magnetic field strength of a neutron-star-powered ultraluminous X-ray source," was funded by NASA and the Ernest Rutherford Fellowships.


Related Links
California Institute of Technology
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Remote jets are clearer now
Moscow, Russia (SPX) Feb 27, 2018
Astrophysicists at MIPT's Laboratory of Fundamental and Applied Research of Relativistic Objects of the Universe have developed a model for testing a hypothesis about supermassive black holes that lie at the centers of galaxies. The new model enables scientists to predict how much rotational energy a black hole loses when it emits beams of ionized matter known as astrophysical jets. The energy loss is estimated based on measurements of a jet's magnetic field. The paper was published in the j ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Latest updates from NASA on IMAGE Recovery

Radioactive cylinder found on Lebanon coast: authority

Researchers demonstrate promising method for improving quantum information processing

Silk fibers could be high-tech 'natural metamaterials'

STELLAR CHEMISTRY
British astronaut hails 'groundbreaking' Airbus satellite

Northrop Grumman gets production, support contracts for E-2D Hawkeye

Studies prove superior performance of HTS for Government customers

SatCom options meet demanding connectivity requirements for helicopters

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

Airbus selected by ESA for EGNOS V3 program

Pentagon probes fitness-app use after map shows sensitive sites

STELLAR CHEMISTRY
Air Force awards contract for jet fighter training programs

Trump, Boeing finalize cheaper deal for new Air Force One

Lockheed awarded $158M for support of U.S., foreign F-35 programs

France to block Chinese group taking control of Toulouse airport

STELLAR CHEMISTRY
Antiferromagnets prove their potential for spin-based information technology

Engineers develop flexible, water-repellent graphene circuits for washable electronics

New technology standard could shape the future of electronics design

Shape-shifting organic crystals use memory to improve plastic electronics

STELLAR CHEMISTRY
NASA space laser completes 2,000-mile road trip

Tracking the global footprint of industrial fishing

NASA joins international science team in exploring auroral cusp from Norway

How does GEOS-5-based planetary boundary layer height and humidity vary across China?

STELLAR CHEMISTRY
Gabon accuses France's Veolia of pollution

UK, EU spar over who will be greenest after Brexit

German nights get brighter - but not everywhere

The plastics industry is leaking huge amounts of microplastics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.