Space Industry and Business News  
CHIP TECH
Atomically thin magnets for next generation spin and quantum electronics
by Staff Writers
Hoboken NJ (SPX) May 14, 2020

A ferromagnetic semiconductor semiconductor two-atoms thick. The green, blue, and red spheres are sulfur, molybdenum and iron atoms, respectively.

As our smartphones, laptops, and computers get smaller and faster, so do the transistors inside them that control the flow of electricity and store information. But traditional transistors can only shrink so much. Now, researchers at Stevens Institute of Technology have developed a new atomically thin magnetic semiconductor that will allow the development of new transistors that work in a completely different way; they not only can harness an electron's charge but also the power of its spin, providing an alternative path to creating ever smaller and faster electronics.

Rather than relying on making smaller and smaller electrical components, the new discovery, reported in the April 2020 issue of Nature Communications, potentially provides a critical platform for advancing the field of spintronics (spin + electronics), a fundamentally new way to operate electronics and a much-needed alternative to continued miniaturization of standard electronic devices. In addition to removing the miniaturization barrier, the new atomically thin magnet can also enable faster processing speed, less energy consumption and increased storage capacity.

"A two-dimensional ferromagnetic semiconductor is a material in which ferromagnetism and semiconducting properties coexist in one, and since our material works at room temperature, it allows us to readily integrate it with the well-established semiconductor technology," said EH Yang, a professor of mechanical engineering at Stevens Institute of Technology, who led this project.

"The magnetic field strength in this material is 0.5 mT; while such weak magnetic field strength cannot allow us to pick up a paper clip, it is large enough to alter the spin of electrons, which can be utilized for quantum bits applications," said Stefan Strauf, a professor of physics at Stevens.

When computers were first built, they filled an entire room, but now they can fit in your back pocket. The reason for this is Moore's law, which suggests that every two years, the number of transistors that fit on a computer chip will double, effectively doubling a gadget's speed and capability. But transistors can only become so small before the electrical signals that they are supposed to control no longer obey their commands.

While most forecasters expect Moore's law will end by 2025, alternative approaches, which do not rely on physical scaling, have been investigated. Manipulating the spin of electrons, instead of relying solely on their charge, may provide a solution in the future.

Building a new magnetic semiconductor using two-dimensional materials - that is, two-atoms thick- will allow the development of a transistor to control electricity with control of the spin of an electron, either up or down, while the whole device remains lightweight, flexible and transparent.

Using a method called in situ substitutional doping, Yang and his team successfully synthesized a magnetic semiconductor whereby a molybdenum disulfide crystal is substitutionally doped with isolated iron atoms. During this process, the iron atoms kick off some of the molybdenum atoms and take their place, in the exact spot, creating a transparent and flexible magnetic material - again, only two-atoms thick. The material is found to remain magnetized at room temperature, and since it is a semiconductor, it can directly be integrated into the existing architecture of electronic devices in the future.

Yang and his team at Stevens worked with several institutions to image the material - atom by atom - to prove that the iron atoms took the place of some of the molybdenum atoms. These institutions included the University of Rochester, Rensselaer Polytechnic Institute, Brookhaven National Laboratory, and Columbia University.

"To do something great in science, you need to get others to collaborate with you," said Shichen Fu, a Ph.D. student in mechanical engineering at Stevens. "This time, we brought all the right people together - labs with different strengths and different perspectives - to make this happen."

Research paper


Related Links
Stevens Institute Of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Army researchers see path to quantum computing at room temperature
Adelphi MD (SPX) May 04, 2020
Army researchers predict quantum computer circuits that will no longer need extremely cold temperatures to function could become a reality after about a decade. For years, solid-state quantum technology that operates at room temperature seemed remote. While the application of transparent crystals with optical nonlinearities had emerged as the most likely route to this milestone, the plausibility of such a system always remained in question. Now, Army scientists have officially confirmed the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
China tests 3D printing in space for first time

Liquid metal research invokes 'Terminator' film - but much friendlier

Special effects and virtual guests: China weddings go online

'Assassin's Creed' stars as Xbox teases new games

CHIP TECH
Northrop Grumman to rapidly develop net-centric gateway

Dominate the electromagnetic spectrum

L3Harris Technologies awarded third LRIP order on US Army's HMS Manpack IDIQ contract

Lockheed Martin's new contract with DARPA can disrupt the future of space

CHIP TECH
CHIP TECH
Galileo positioning aiding Covid-19 reaction

GPS celebrates 25th year of operation

Galileo Green Lane, easing pressure at the EU's internal borders

India develops unique model to hit enemy targets without positioning error

CHIP TECH
Croatia defence minister quits after deadly plane crash

Raytheon awarded $325M for repair of ATFLIR system for Navy Super Hornets

Conceptual study for environment-friendly flight

B1-B bombers deployed to Guam

CHIP TECH
Army researchers see path to quantum computing at room temperature

Smart chips for space

Reducing the carbon footprint of artificial intelligence

Quantum research unifies two ideas offering an alternative route to topological superconductivity

CHIP TECH
Cold air rises - what that means for Earth's climate

Wetter climate to trigger global warming feedback loop in the tropics

Russia to launch first satellite for monitoring Arctic climate this year

Impact of Coronavirus on air quality now visible

CHIP TECH
Stars and scientists call for world not to 'go back to normal'

Scientists find highest ever level of microplastics on seafloor

China's capital clamps down on single-use items to fight waste

Pandemic: Less air pollution means thousands fewer die









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.