Space Industry and Business News  
VENUSIAN HEAT
Atmospheric tidal waves maintain Venus' super-rotation
by Staff Writers
Sapporo, Japan (SPX) Apr 24, 2020

The proposed system that maintains the super-rotation (yellow) of Venus' atmosphere. The thermal tide (red) towards the equatorial top enforces the westward super-rotation. The atmosphere is controlled by a dual circulation system: the meridional (vertical) circulation (white) that slowly transports heat towards the poles and the super-rotation that rapidly transports heat towards the planet's nightside. Credit: Planet-C project team

Images from the Akatsuki spacecraft unveil what keeps Venus's atmosphere rotating much faster than the planet itself.

An international research team led by Takeshi Horinouchi of Hokkaido University has revealed that this 'super-rotation' is maintained near the equator by atmospheric tidal waves formed from solar heating on the planet's dayside and cooling on its nightside. Closer to the poles, however, atmospheric turbulence and other kinds of waves have a more pronounced effect. The study was published online in Science on April 23.

Venus rotates very slowly, taking 243 Earth days to rotate once around its axis. Despite this very slow rotation, Venus' atmosphere rotates westward 60 times faster than its planetary rotation. This super-rotation increases with altitude, taking only four Earth days to circulate around the entire planet towards the top of the cloud cover.

The fast-moving atmosphere transports heat from the planet's dayside to nightside, reducing the temperature differences between the two hemispheres. "Since the super-rotation was discovered in the 1960s, however, the mechanism behind its forming and maintenance has been a long-standing mystery," says Horinouchi.

Horinouchi and his colleagues from the Institute of Space and Astronautical Science (ISAS, JAXA) and other institutes developed a new, highly precise method to track clouds and derive wind velocities from images provided by ultraviolet and infrared cameras on the Akatsuki spacecraft, which began its orbit of Venus in December 2015. This allowed them to estimate the contributions of atmospheric waves and turbulence to the super-rotation.

The group first noticed that atmospheric temperature differences between low and high latitudes are as small as it cannot be explained without a circulation across latitudes. "Since such circulation should alter the wind distribution and weaken the super-rotation peak, it also implies there is another mechanism which reinforces and maintains the observed wind distribution," Horinouchi explained.

Further analyses revealed that the maintenance is sustained by the thermal tide - an atmospheric wave excited by the solar heating contrast between the dayside and the nightside - which provides the acceleration at low latitudes.

Earlier studies proposed that atmospheric turbulence and the waves other than the thermal tide may provide the acceleration. However, the current study showed that they work oppositely to weakly decelerate the super-rotation at low latitude, even though they play an important role at mid- to high latitudes.

Their findings uncovered the factors that maintain the super-rotation while suggesting a dual circulation system that effectively transports heat across the globe: the meridional circulation that slowly transports heat towards the poles and the super-rotation that rapidly transports heat towards the planet's nightside.

"Our study could help better understand atmospheric systems on tidally-locked exo-planets whose one side always facing the central stars, which is similar to Venus having a very long solar day," Horinouchi added.

Research paper


Related Links
Hokkaido University
Venus Express News and Venusian Science


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


VENUSIAN HEAT
MESSENGER data upends idea about Venus's atmosphere
Laurel MD (SPX) Apr 21, 2020
Philosopher Nicholas Rescher once wrote, "Scientific discoveries are often made not on the basis of some well-contrived plan of investigation, but through some stroke of sheer luck." For a team of researchers at the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, that statement couldn't be more true. What started as a dry run to ensure instruments on NASA's Mercury Surface, Space Environment, Geochemistry and Ranging (MESSENGER) spacecraft worked properly, later turned in ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

VENUSIAN HEAT
Astronauts, robots and the history of fixing and building things in space

Intelsat 901 Satellite Returns to Service Using Northrop Grumman's Mission Extension Vehicle

New Army tech may turn low-cost printers into high-tech producers

Utilizing the impact resistance of the world's hardest concrete for disaster prevention

VENUSIAN HEAT
US Space Force awards L3Harris Technologies $500 Million IDIQ contract for anti-jam satellite modem

US Space Force pens $1B in contracts for unjammable modems

AEHF-6 Satellite Actively Communicating With U.S. Space Force

AEHF-6 satellite completes protected satellite constellation

VENUSIAN HEAT
VENUSIAN HEAT
Quantum entanglement offers unprecedented precision for GPS, imaging and beyond

India develops unique model to hit enemy targets without positioning error

Apple data show dramatic impact of virus on movement

USSF reschedules next GPS launch

VENUSIAN HEAT
Fast-track training for pilots who never leave the ground

Lockheed expects slowed production due to COVID-19, F-35 to be hit hardest

Boeing nabs $75.1M for Super Hornet service life modification

Germany opts for US-European solution to replace fighter jet fleet

VENUSIAN HEAT
Wiring the quantum computer of the future

Reducing the carbon footprint of artificial intelligence

Quantum research unifies two ideas offering an alternative route to topological superconductivity

The future of semiconductors is clear

VENUSIAN HEAT
Nine reasons we're grateful to live on Earth

How NASA is Helping the World Breathe More Easily

Spotting air pollution with satellites, better than ever before

Wildlife conservation aided by L3Harris Electro-Optical/Infrared Technology

VENUSIAN HEAT
First successful study to detect marine plastic pollution using satellites

Activists concerned over increase in waste smuggling in Romania

Water replaces toxic fluids in production of plastics

Airborne particle levels plummet in Northern India









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.