Space Industry and Business News  
EXO WORLDS
Atmospheric chemistry on paper
by Staff Writers
Bern, Switzerland (SPX) Jul 22, 2016


illustration only

Normally computers speed up calculations. But with his new pen-and-paper formula Kevin Heng of the University of Bern gets his results thousands of times faster than using conventional computer codes. The astrophysicist calculates the abundances of molecules (known as atmospheric chemistry) in exoplanetary atmospheres. Ultimately, deciphering the abundances of molecules allows us to interpret if features in a spectrum are due to physics, geology or biology.

With their sophisticated instruments, astronomers today not only detect new exoplanets outside our solar system but are able to characterize the atmospheres of some of these distant worlds. To know what to anticipate and when to be surprised theorists calculate the expected abundances of molecules. Kevin Heng, director of the Center of Space and Habitability (CSH) at the University of Bern, is an expert in these calculations.

"The sun - and other stars - have a very definite proportion of chemical elements like hydrogen, carbon, oxygen or nitrogen", he explains: "And there is a lot of evidence that planets form from the essence of stars." But whereas in stars the elements exist as atoms, in the lower temperatures of exoplanetary atmospheres they form different molecules according to temperature and pressure.

At low temperatures, for instance, the dominant carrier of carbon is methane (CH4), at high temperatures it is carbon monoxide (CO). The network of possible chemical reactions is well known but very large. Therefore, conventional calculations are complex and very time-consuming.

"I found a way to do this much faster by solving 99% of the problem on paper, before one even touches a computer," says Kevin Heng. "Normally, one solves what we call a system of coupled, non-linear equations. I managed to reduce the problem to solving a single polynomial equation. Effectively, I 'uncoupled' the system of equations on paper, instead of using a computer." Solving this polynomial equation then takes a fraction of the original computer time.

10 milli-seconds instead of a few minutes
"It took me a few months to figure out what is possible", says the astrophysicist. He needed two papers to lay down the foundation for the main result in the third paper that is now accepted for publication in the Astrophysical Journal.

"This breakthrough essentially reduces the main part of the program to one line of computer code. Now we can calculate chemistry in 0.01 seconds (10 milli-seconds) instead of a few minutes." A figure showing curves of the relative abundances of various molecules like methane, carbon monoxide, water or ammonium versus temperature demonstrates how accurate the new formula is.

"You can almost not tell the difference between my calculations and those with the complicated computer code," summarizes the scientist. No wonder the paper caused a stir in the experts' community even before its official publication.

The new analytical method has several implications. The tremendous speed-up allows for a more thorough exploration of the possibilities when interpreting the spectra of exoplanetary atmospheres.

To Heng, what is more exciting is the opportunity for scientific democracy: "It is now easy for any astronomer, around the world, to calculate atmospheric chemistry in exoplanets. One no longer needs to implement a sophisticated computer code. I get a kick out of knowing that this knowledge is instantly transferrable to any other scientist in the world."

Observing the atmospheres of exoplanets, scientists hope to find out how the objects formed and what kind of processes are still taking place. Atmospheric chemistry teaches them how and when to be surprised. Differences between the calculated and the observed abundances of molecules could unveil geological or even biological processes.

"Maybe in 20 or 30 years looking at an exoplanetary atmosphere with water, oxygen, ozone and other molecules we can ask whether we see life," says Kevin Heng: "But first we will have to answer the question whether the data can be explained by physics or geology."

Reference: K. Heng, S.-M. Tsai: Analytical Models of Exoplanetary Atmospheres, Astrophysical Journal, 2016, in print


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Center for Space and Habitability (CSH)
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO WORLDS
NASA's Kepler Confirms 100+ Exoplanets During Its K2 Mission
Pasadena CA (JPL) Jul 19, 2016
An international team of astronomers has discovered and confirmed a treasure trove of new worlds using NASA's Kepler spacecraft on its K2 mission. Out of 197 initial planet candidates, scientists have confirmed 104 planets outside our solar system. Among the confirmed is a planetary system comprising four promising planets that could be rocky. These four planets, all between 20 and 50 perc ... read more


EXO WORLDS
Fallout Fungi From Chernobyl Flee Earth on ISS Radiation Study Mission

3D printer helps scientists scale up nanostructures

Scientists move 1 step closer to creating an invisibility cloak

NASA to Begin Testing Next Generation of Spacecraft Heat Exchangers

EXO WORLDS
Rethinking the Space Environment in a Globalized World

What Industry Can Teach the DoD About Innovation

New Class of RPAs Well Suited to a Variety of Government Uses

MUOS-5 Transfer Maneuver Temporarily Halted, Parked In Safe Orbit

EXO WORLDS
SpaceX cargo ship arrives at space station

SpaceX propels cargo to space station, lands rocket

Ukraine, US aim to launch jointly-developed space rocket

SpaceX to launch key 'parking spot' to space station

EXO WORLDS
China's satnav industry grows 29 pct in 2015

Twinkle, Twinkle, GPS

Like humans, lowly cockroach uses a GPS to get around, scientists find

Raytheon hits next-generation GPS milestone

EXO WORLDS
How a NASA Engineer Created the Modern Airplane Wing

Transport ministers to discuss future of MH370 search

U.K. announces $2.3 billion Apache helicopter deal

Lockheed Martin gets $559 million for Lot 10 F-35s

EXO WORLDS
Scientists glimpse inner workings of atomically thin transistors

Physicists couple distant nuclear spins using a single electron

Berkeley Lab scientists grow atomically thin transistors and circuits

Building a better bowtie

EXO WORLDS
Europe's workhorse Sentinel ready for action

Chilly summer for Sentinel-2B

Clusters of small satellites could help estimate Earth's reflected energy

SIIS started KOMPSAT-3A commercial services

EXO WORLDS
Urban pigeons help researchers monitor lead pollution

Olympic sailors to get garbage-free waters - maybe

Air pollution up in a third of Chinese cities: Greenpeace

E.Asian shipping emissions kill tens of thousands: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.