Space Industry and Business News  
TECH SPACE
At last, a simple 3D printer for metal
by Staff Writers
Oxford UK (SPX) Sep 05, 2018

A sample part printed from bulk metallic glass via the TPF-based FFF process.

Used to produce three-dimensional objects of almost any type, across a range of industries, including healthcare, aviation and engineering, 3D printed materials have come of age during the last decade. Research published in the journal Materials Today demonstrates a new approach to 3D printing to fuse metallic filaments made from metallic glass into metallic objects.

Jan Schroers, Professor of Mechanical Engineering and Materials Science at Yale University and Desktop Metal, Inc., in Burlington, Massachusetts, USA, along with colleagues point out that 3D printing of thermoplastics is highly advanced, but the 3D printing of metals is still challenging and limited. The reason being that metals generally don't exist in a state that they can be readily extruded.

"We have shown theoretically in this work that we can use a range of other bulk metallic glasses and are working on making the process more practical- and commercially-usable to make 3D printing of metals as easy and practical as the 3D printing of thermoplastics," said Prof. Schroers.

Unlike conventional metals, bulk metallic glasses (BMGs) have a super-cooled liquid region in their thermodynamic profile and are able to undergo continuous softening upon heating--a phenomenon that is present in thermoplastics, but not conventional metals. Prof. Schroers and colleagues have thus shown that BMGs can be used in 3D printing to generate solid, high-strength metal components under ambient conditions of the kind used in thermoplastic 3D printing.

The new work could side-step the obvious compromises in choosing thermoplastic components over metal components, or vice-versa, for a range of materials and engineering applications.

Additive manufacturing of metal components has been developed previously, where a powder bed fusion process is used, however this exploits a highly-localized heating source, and then solidification of a powdered metal shaped into the desired structure. This approach is costly and complicated and requires unwieldy support structures that are not distorted by the high temperatures of the fabrication process.

The approach taken by Prof. Schroers and colleagues simplifies additive manufacturing of metallic components by exploiting the unique-amongst-metals softening behavior of BMGs. Paired with this plastic like characteristics are high strength and elastic limits, high fracture toughness, and high corrosion resistance. The team has focused on a BMG made from zirconium, titanium, copper, nickel and beryllium, with alloy formula: Zr44Ti11Cu10Ni10Be25. This is a well-characterized and readily available BMG material.

The team used amorphous rods of 1 millimeter (mm) diameter and of 700mm length. An extrusion temperate of 460 degrees Celsius is used and an extrusion force of 10 to 1,000 Newtons to force the softened fibers through a 0.5mm diameter nozzle.

The fibers are then extruded into a 400 C stainless steel mesh wherein crystallization does not occur until at least a day has passed, before a robotically controlled extrusion can be carried out to create the desired object.

When asked what challenges remain toward making BMG 3D printing a wide-spread technique, Prof. Schroers added, "In order to widely use BMG 3D printing, practical BMG feedstock available for a broad range of BMGs has to be made available. To use the fused filament fabrication commercially, layer-to-layer bonding has to be more reliable and consistent."

Research Report: "3D printing metals like thermoplastics: Fused filament fabrication of metallic glasses"


Related Links
Elsevier
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Access to 3D printing is changing the work in research labs
Hamilton, Canada (SPX) Aug 31, 2018
A small, black box developed in a McMaster University lab could change the way scientists search for new antibiotics. The Printed Fluorescence Imaging Box - or PFIbox, for short - is capable of collecting massive amounts of data that will help researchers in the Michael G. DeGroote Institute for Infectious Disease Research in their quest to discover new antibiotics. The box allows scientists to analyze more than 6,000 samples of bacteria at a time. The tool uses LED lights to excite fl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Access to 3D printing is changing the work in research labs

A new way to remove ice buildup without power or chemicals

Researchers use acoustic forces to print droplets that couldn't be printed before

All that is gold is not biochemically stable

TECH SPACE
US Marines test laser communication system to beat radio jammers

Northrop Grumman, DARPA test 100 gigabit transmissions

US mobile network limits access to firefighters battling blaze

SSL to define next-generation secure satellite communications for the USAF

TECH SPACE
TECH SPACE
UK plans own satellite system after Galileo exclusion

Space sector to benefit from multi-million pound work on UK alternative to Galileo

US Air Force's first advanced GPS 3 satellite shipped to Cape Canaveral

China launches new twin BeiDou navigation satellites

TECH SPACE
Touchdown! NASA's Football Stadium-sized Scientific Balloon Takes Flight

Air Force, Army conduct joint personnel, supply drop exercise

Boeing receives contract for F-15 Eagle targeting pods

Air Force awards contract to M1 for T-38 maintenance

TECH SPACE
Quantum gates between atoms and photons will scale up quantum computers

Scientists predict superelastic properties in a group of iron-based superconductors

Physicists show first proof of Dicke cooperativity in a matter-matter system

Helping the microchip industry go with the flow

TECH SPACE
Aeolus laser shines light on wind

Ocean satellite Sentinel-6A beginning to take shape

China is hot spot of ground-level ozone pollution

NASA launching Advanced Laser to measure Earth's changing ice

TECH SPACE
Cleaning up Tokyo's beaches: An Olympic task

Plastic, biogenic particles combine in the ocean, sink to lower depths

Engineered sand zaps storm water pollutants

The fate of plastic in the oceans









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.