Space Industry and Business News  
STELLAR CHEMISTRY
Astronomers find that dark matter dominates across cosmic time
by Staff Writers
Austin TX (SPX) Dec 13, 2018

This composite image of the dusty star-forming galaxy DSFG850.95 shows young stars, seen in blue from Hubble Space Telescope, and dust, seen in red by the Atacama Large Millimeter/submillimeter Array. Credit: Patrick Drew (UT Austin)/STScI/ALMA

In findings published in The Astrophysical Journal, University of Texas at Austin astronomers report that they have stumbled on an extraordinary galaxy that may corroborate a recently contested theory about dark matter.

Dark matter is matter that does not give off any light, but is detectable by its gravitational pull on other matter. It was first discovered in the 1970s in studies of spiral galaxies, whose outer regions rotated too fast only to be driven by the visible stars and gas in those regions.

Astronomers reasoned there must be more mass that is unseen. Decades of galaxy observations have shown that almost all galaxies contain huge quantities of this "dark matter," and that, in fact, there is about five times as much dark matter as there is normal, visible matter in the universe.

However, a few recent studies have indicated that some galaxies don't follow the same pattern as the "dark matter-rich" galaxies found since the 1970s. These studies showed a handful of galaxies seen around 10 billion years ago do not contain the expected quantity of dark matter.

This could mean that galaxies at that time didn't have much dark matter but gained it later, at some point in the past 10 billion years. If that's the case, it would challenge our fundamental understanding of how galaxies form.

Now UT Austin graduate student Patrick Drew and his advisor, professor Caitlin Casey, have found a very distant galaxy that appears rich with dark matter, exactly as expected from long-held theory. Because this galaxy is 9 billion light-years away, it tells us that some galaxies do already contain quite a bit of dark matter in the distant past. The serendipitous finding appears to contradict the other controversial findings of galaxies with little dark matter content.

Drew's team studied this galaxy while they were using the Keck Telescope in Hawaii for a survey of the most extreme star-forming galaxies in the universe, the so-called "dusty star-forming galaxies." They were not intending to study dark matter at all - rather, they sought to understand why these galaxies produce so many stars so rapidly.

But one of their galaxies surprised them, and sent their work off into a new direction.

Because of the random angle at which the galaxy DSFG850.95 was studied with the telescope, the data provided an extremely detailed record of the speed of the galaxy's rotation from the center of the galaxy all way out to its far reaches. Called a "rotation curve," this measurement is just what astronomers use to determine the amount of dark matter in a galaxy.

They showed this data to Susan Kassin, a colleague at the Space Telescope Science Institute. Kassin, an expert on such measurements of rotation curves, immediately recognized that they had found something extraordinary: This galaxy, seen 9 billion years ago, contains all the expected dark matter that theory predicts.

This is in contrast to a 2017 study in Nature that claimed that galaxies at this cosmic epoch, 10 billion years ago, "might not have as much dark matter, and that they're fundamentally different to galaxies in the present-day universe," Casey said. "The galaxy we found is a clear counter-example of that, where it seems to have dark matter behaving in the normal way, as it does in the present-day universe."

The bottom line, Drew says is "this galaxy does what's expected of galaxies like it and it is the first solid confirmation that what happens in these galaxies in the current-day universe is the same as what happened in the early universe."

Drew plans to follow up this study with further studies of the galaxy in his ongoing project with ALMA.

Research Report: "Evidence of a Flat Outer Rotation Curve in a Starbursting Disk Galaxy at z=1.6"


Related Links
McDonald Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
COSINE-100 experiment investigates dark matter mystery
New Haven CT (SPX) Dec 06, 2018
Yale scientists are part of a new international experiment that challenges previous claims about the detection of non-luminous dark matter. Astrophysical evidence suggests that the universe contains a large amount of non-luminous dark matter, yet no definite signal of it has been observed despite concerted efforts by many experimental groups. One exception to this is the long-debated claim by the DArk MAtter (DAMA) collaboration, which has reported positive observations of dark matter in its sodiu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Supercomputers without waste heat

Multifunctional dream ceramic matrix composites are born

STELLAR CHEMISTRY
Global Ku-Band HTS platform provides government customers with unprecedented solutions

US Space Force Takes Over Satellite Purchases to Boost Warfighter Communication

Boeing tapped by Air Force for jam-resistant satellite comms terminals

Navy nanosatellite launch delayed for further inspection

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Lockheed Martin prepares GPS III satellite for SpaceX launch

First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

Spire Taps Galileo for Space-Based Weather Data

UK will build its own satellite-navigation system after Brexit

STELLAR CHEMISTRY
US military declares five missing Marines dead after Japan crash

Germany opens negligent homicide probe in Mali Airbus chopper crash

Aircraft readiness goals for 2019 unlikely to be reached, officials say

Navy taps Sikorsky for database to support CH-53K helicopters

STELLAR CHEMISTRY
Bringing advanced microelectronics to revolutionary defense applications

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

Copper compound as promising quantum computing unit

Two-dimensional materials skip the energy barrier by growing one row at a time

STELLAR CHEMISTRY
Copernicus Sentinel-5P ozone boosts daily forecasts

New ammonia emission sources detected from space

First Radar Image from ICEYE-X2 Published Only A Week After Launch

Ball Aerospace delivers pollution monitoring instrument to NASA

STELLAR CHEMISTRY
Waste plant fire stokes Italy garbage crisis

Madrid temporarily bans 'oldest, most polluting' vehicles

Slow recycler Turkey seeks better uses for its trash

Lynas mulls 'legal options' after Malaysia imposes new conditions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.